点集的最小外包围椭圆02

本文探讨了求解点集最小外包围椭圆的问题,通过数学抽象和优化建模,利用椭圆的面积来定义大小。介绍了从二次曲线到中心形式的变换,以及如何通过正交矩阵找到半轴长度。最后,提出了计算程序,包括求解点集的凸包、最小外包圆,并以最小外包圆半径为约束,进行椭圆优化问题的求解。
摘要由CSDN通过智能技术生成

更多阅读:sppy.site

问题解答

给定点集 P = { P 1 , P 2 , ⋯   , P n } \mathcal{P}=\{P_1,P_2,\cdots,P_n\} P={ P1,P2,,Pn} ,求包围该点集的最小椭圆 E \mathcal{E} E

椭圆大小

给定椭圆的半轴 a a a b b b ,如何定义椭圆的大小?

  • 面积: A r e a ( E ) = π a b \mathrm{Area}(\mathcal{E})=\pi ab Area(E)=πab
  • 周长: P e r i m e t e r ( E ) = ∫ 0 2 π ( a sin ⁡ t ) 2 + ( b cos ⁡ t ) 2   d t \mathrm{Perimeter}(\mathcal{E})=\int_0^{2\pi} \sqrt{(a\sin t)^2+(b\cos t)^2}~\mathrm{d}t Perimeter(E)=02π(asint)2+(bcost)2  dt

对于周长 P e r i m e t e r ( E ) \mathrm{Perimeter}(\mathcal{E}) Perimeter(E) 没有一个简单的初等函数表达形式,故采用面积 A r e a ( E ) \mathrm{Area}(\mathcal{E}) Area(E) 来定义椭圆大小。

问题建模

数学抽象

将二次曲线形式的椭圆方程
A x 2 + B x y + C y 2 + D x + E y + F = 0 Ax^2+Bxy+Cy^2+Dx+Ey+F=0 Ax2+Bxy+Cy2+Dx+Ey+F=0
变换为中心形式,即
A ( x − x 0 ) 2 + B ( x − x 0 ) ( y − y 0 ) + C ( y − y 0 ) 2 = f A(x-x_0)^2+B(x-x_0)(y-y_0)+C(y-y_0)^2=f A(xx0)2+B(xx0)(yy0)+C(yy0)2=f
其中
x 0 = 2 C D − B E B 2 − 4 A C y 0 = 2 A E − B D B 2 − 4 A C x_0=\frac{2CD-BE}{B^2-4AC}\qquad y_0=\frac{2AE-BD}{B^2-4AC} x0=B24AC2CDBEy0=B24AC2AEBD

f = − F + A x 0 2 + B x 0 y 0 + C y 0 2 f=-F+Ax_0^2+Bx_0y_0+Cy_0^2 f=F+Ax02+Bx0y0+

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值