python爬虫接单多少钱(记录一个标价400的单子)爬虫入门实战!

131 篇文章 2 订阅
85 篇文章 0 订阅
本文介绍了使用Python爬虫抓取香港律所网站律师信息的过程,涉及项目需求分析、网页链接提取、requests库请求和页面解析。作者强调了基础爬虫技术和Python工具在入门学习中的重要性,提供了学习资源推荐。
摘要由CSDN通过智能技术生成

前言

其实,我的爬虫技术也是业余的,野路子。写这些文章只能帮助初学者进行爬虫一个了解,能接一些小点的单子。但是真正要应聘爬虫工程师是远远不够的。后面有时间的话我也会进行学习爬虫(如selinum伪装成正常请求,安卓模拟器app爬虫)

爬虫概览

其实我们或多或少都是听说过爬虫这个概念,这个东西的技术栈其实也比较成熟了。

其实在我的理解中,爬虫嘛,就是给自己伪装一下,装成是正常的访问请求,然后获取到网站或者APP中的数据资源的一种技术手段。

当然目前大部分爬虫都是python写的,毕竟python丰富的第三方库资源还有语言优势摆在这里。所以,我们这里也是通过python进行爬虫的编写。

需要Python零基础学习资料的伙伴,可以在公众号【码农资料库】中回复【py】自行领取 包括以下学习资料:

① Python所有方向的学习路线图,清楚各个方向要学什么东西

Python课程视频,涵盖必备基础、爬虫和数据分析

Python实战案例,学习不再是只会理论

Python电子好书,从入门到高阶应有尽有

⑤ 华为出品独家Python漫画教程,手机也能学习 ⑥ 历年互联网企业Python面试真题,复习时非常方便

在这里插入图片描述

一、项目需求

一个香港的老板应该是,他给个网址

里面大概是这样的

在这里插入图片描述

点进去那个箭头的之后是个超链接,然后,要把这个信息爬下来。

在这里插入图片描述

需求挺明确的,而且这个网站,连一些基础的反爬手段都没有,非常适合用来入门实战。

二、分析网页

搞到所有律师的信息的流程清晰的分为两个步骤:

1.搞到所有律师的个人介绍的超链接;

2.然后再对所有链接进行访问。

在这里插入图片描述

可以看到哈,这个记录还是有点多的,11339条,30个记录一页。要全部拿下来不是一件简单的事,

1.找到所有页面的链接:

这个是第一页。

在这里插入图片描述

这个是第二页。

在这里插入图片描述

让我们来看看他的链接:

第一页:www.hklawsoc.org.hk/zh-HK/Serve…

第二页:www.hklawsoc.org.hk/zh-HK/Serve…

找到不同了嘛.第二页多出了一个字段:&pageIndex=2#tips 可以把这个数字换成1和3,试一下.

&pageIndex=1#tips

在这里插入图片描述

&pageIndex=3#tips

在这里插入图片描述

所以所有页面的规律就找到了,用来访问的链接如下:

python

复制代码

for i in range(1, 11339//30): print(i/(11339//30),end=' ') url = "https://www.hklawsoc.org.hk/zh-HK/Serve-the-Public/The-Law-List/Members-with-Practising-Certificate?name=&jur=&sort=1&pageIndex="+str(i)+"#tips"

这个规律真的很简单,所以就用来爬虫的入门了.

2.找到所有律师的个人页面链接:

这个就是一个页面分析的任务了。

在这里插入图片描述

还记得我们刚才是点这个链接访问的这个律师个人信息界面吧,这里面必然有着个人界面的超链接,我们需要的就是把它扒出来出来就可以了。下面我们在这个页面,按F12,查看,操作如下:

  1. 点击F12,进入下面的界面

在这里插入图片描述

2. 点箭头指向的按钮

在这里插入图片描述

  1. 然后点击你想扒出超链接的元素

在这里插入图片描述

点击后:

在这里插入图片描述

这个超链接很显眼了吧。点进去,正好是我们想要的链接。

在这里插入图片描述

三、开始爬取

还记得我们开始说的嘛,爬虫是封装成正常的请求去访问页面然后下载我们想要的资源,对吧所以,这里细化为两个步骤请求页面资源和解析页面资源找到我们想要的数据**(这里我们想要的是律师个人页面的超链接)**

  • 这里先进行第一步:请求页面资源

爬虫的技术获取网页的手段最基础的就是python的requests方法了。我们这里用的也是这个方法。

requests的请求在这里也比较简单,就是简单的get请求,其实也有post的请求,网络上有很多资料,我这里就不赘述了。

简单的requests的get请求代码如下:

python

复制代码

import requests headers = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/103.0.0.0 Safari/537.36'} for i in range(1, 11339//30): print(i/(11339//30),end=' ') url = "https://www.hklawsoc.org.hk/zh-HK/Serve-the-Public/The-Law-List/Members-with-Practising-Certificate?name=&jur=&sort=1&pageIndex="+str(i)+"#tips" response = requests.get(url, headers=headers) html = response.content.decode('utf-8', 'ignore')

这里response就是我们请求下来的页面资源了,经过源码解析获取到了html源码。

在这里插入图片描述

当然,你可能会有疑问这个headers从哪来的,哪里规定的。

每个浏览器都有自己的headers,因为headers要模仿你自己的浏览器向网页发送信息。如果使用Python进行爬取页面时,使用了别人的headers可能会导致爬取不到任何数据(因为代码在你自己的电脑运行,所以无法模拟别人的浏览器)

当然其实用别人也可以,有的网站他可能安全做的没有那么好,就都还可以正常访问。当然,所以如何查找自己headers也很重要,具体步骤如下:

  1. 随便打开一个网页,例如打开我们这个页面,右键点击‘检查’或者按F12,出现下图页面。

在这里插入图片描述

  1. 点击network

在这里插入图片描述

  1. F5刷新

在这里插入图片描述

4. 在name框随便点一个选项,在右侧点击‘headers’选项,在最下方找到‘User-Agent:’,粘贴到自己代码即可。如下图

在这里插入图片描述

在这里插入图片描述

个人总结:

这里主要是介绍一个爬虫的基本流程,能够帮助我们爬下来我们想要的页面源码。当然光爬下来源码是远远不够的,还需要各种规则(lxml、beautifulsoup以及正则表达式)的解析才能获取到从整个源码中获取我们想要的数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值