2021牛客暑期多校训练营8 J题: Tree

J题: Tree

原题链接:https://ac.nowcoder.com/acm/contest/11259/J

题目大意

有两个人在 n n n 个点的树上玩博弈游戏,节点编号从 1 1 1 n n n ,先手初始在 s s s 节点,后手在 t t t 节点。
双方轮流操作,每次将移动到当前所在节点的某个邻居上,并删除原先节点和其相邻的所有边。双方尽可能地移动,当两个玩家都不能移动时,游戏结束,每个玩家的分数为各自的移动步数。
双方都试图最大化(自己分数-对手分数),且双方均采取最优策略,求先手得分与后手得分之差。

题解

首先我们考虑两人操作的相互关联性,显然, s s s t t t 之间有一条唯一路径,双方只有同时在这一路径上移动时才会互相影响,若一方离开了这一路径,则两人处于两个不同的联通分块中,即不相互影响。
那么当两人同时在该路径上移动时,移动方式必然为互相靠近,直至一方离开路径或两者相邻(此时两人都只能选择离开当前路径)。
我们可以将中间的这一条路径展开成为一条长度为 m m m 的链(原 s s s 点与 t t t 点分别在链上表示为 1 1 1 m m m ),并预先算出 d i s i dis_i disi 表示从第 i i i 个点离开路径后可进行的最大操作次数(以每个点为根跑dfs,记录最大深度),然后考虑博弈。我们设:

  1. f l , r f_{l,r} fl,r 表示先后手位置分别移至链上 l l l r r r 处时,轮到先手操作时先手可最大化得到的(先手分数-后手分数)
  2. g l , r g_{l,r} gl,r 表示先后手位置分别移至链上 l l l r r r 处时,轮到后手操作时后手可最大化得到的(后手分数-先手分数)

显然,两者此时都有两种策略:直接离开路径,或更进一步然后转换到对方操作。
可得转移式为:
f l , r = max ⁡ ( 1 − g l + 1 , r , d i s l − max ⁡ i = l + 1 r d i s i + r − i ) g l , r = max ⁡ ( 1 − f l , r − 1 , d i s r − max ⁡ i = l r − 1 d i s i + i − l ) \begin{aligned} f_{l,r}&=\max(1-g_{l+1,r},dis_l-\max^r_{i=l+1}dis_i+r-i)\\ g_{l,r}&=\max(1-f_{l,r-1},dis_r-\max^{r-1}_{i=l}dis_i+i-l) \end{aligned} fl,rgl,r=max(1gl+1,r,disli=l+1maxrdisi+ri)=max(1fl,r1,disri=lmaxr1disi+il)

max ⁡ \max max 的前一项表示继续靠近并转入对方操作,取对方操作得到的最大(对方分数-当前操作方分数)即可,注意对当前操作方而言计算应为(当前操作方分数-对方分数),所以应为减去,而且不要忘记加上当前向前靠近所走的一步。
max ⁡ \max max 的第二项表示直接离开路径,此时枚举对方可选的离开位置,取最大的对方操作数(对方总是采取最优策略)减去即可(对于 d i s i ± i dis_i\pm i disi±i 的项,可以通过ST表+RMQ实现 O ( 1 ) O(1) O(1) 查询,其中的常数项 l / r l/r l/r 可以直接提出,简化过程减小复杂度)。
若上式采用递归实现,则终止条件应为 l + 1 = r l+1=r l+1=r (即先后手处于相邻状态),此时返回 d i s 当 前 操 作 方 − d i s 对 方 dis_{当前操作方}-dis_{对方} disdis 即可。

参考代码

#include<bits/stdc++.h>
#define ll long long
#define For(i,n,m) for(int i=n;i<=m;i++)
#define FOR(i,n,m) for(int i=n;i>=m;i--)
using namespace std;

void read(int &x){
	int ret=0;
	char c=getchar(),last=' ';
	while(!isdigit(c))last=c,c=getchar();
	while(isdigit(c))ret=ret*10+c-'0',c=getchar();
	x=last=='-'?-ret:ret;
}

const int MAXN=5e5+5;
int n,m,s,t,maxd,in[MAXN];
int dis[MAXN],_log[MAXN],STs[MAXN][20],STt[MAXN][20];
vector<int>e[MAXN],path;

void dfs(int x,int fa){//dfs跑出s到t之间的路径
	int son;
	For(i,0,e[x].size()-1){
		son=e[x][i];
		if(son==fa)continue;
		dfs(son,x);
		if(in[son])in[x]=1;//若其子节点为路径点,则该点也为路径点
	}
	if(in[x])path.push_back(x);//若在路径上,将点存入path中,注意递归的顺序是反向的,所以搜索若以t为根则可以保证s在路径中为首元素
}

void dfsv(int x,int fa,int d){//跑出路径上每个点离开时的最大操作次数(即其往下的最长链长度/深度)
	maxd=max(maxd,d);//取最大深度
	int son;
	For(i,0,e[x].size()-1){
		son=e[x][i];
		if(son==fa||in[son])continue;//注意,若子节点为路径上点则跳过,因为此时的策略是离开路径
		dfsv(son,x,d+1);
	}
}

void init(){//读入
	read(n),read(s),read(t);
	int u,v;
	For(i,2,n){
		read(u),read(v);
		e[u].push_back(v);
		e[v].push_back(u);
	}
}

void dfsinit(){//预处理出链(路径)与dis数组
	in[s]=in[t]=1;//标记s和t
	dfs(t,-1);//以t为根则保证s在路径中为首元素
	m=path.size();//记录路径总长 
	For(i,0,m-1){
		maxd=0;
		dfsv(path[i],-1,0);//跑出最长链长度/深度
		dis[i+1]=maxd;//更新dis,注意下标
	}
}

void STinit(){//初始化ST表,注意要分为两块(+i与-i)
	For(i,2,m)_log[i]=_log[i>>1]+1;//预处理log数组,方便以后RMQ
	For(i,1,m){
		STs[i][0]=dis[i]+i;//+i项初始化
		STt[i][0]=dis[i]-i;//-i项初始化
	}
	int k=_log[m],limit,a,b;
	For(j,1,k){
		limit=m-(1<<j)+1;
		For(i,1,limit){
			a=STs[i][j-1],b=STs[i+(1<<j-1)][j-1];
			STs[i][j]=max(a,b);//+i项更新
			a=STt[i][j-1],b=STt[i+(1<<j-1)][j-1];
			STt[i][j]=max(a,b);//-i项更新
		}
	}
}

int RMQs(int l,int r){//+i表查询
	int k=_log[r-l+1];
	int a=STs[l][k],b=STs[r-(1<<k)+1][k];
	return max(a,b);
}

int RMQt(int l,int r){//-i表查询
	int k=_log[r-l+1];
	int a=STt[l][k],b=STt[r-(1<<k)+1][k];
	return max(a,b);
}

int G(int l,int r);//函数声明,因为F中需要调用G
int F(int l,int r){//此时先手操作
	if(l+1==r)return dis[l]-dis[r];//边界,返回(先手操作数-后手操作数)
	return max(1-G(l+1,r),dis[l]-(r+RMQt(l+1,r)));//转移
}

int G(int l,int r){//此时后手操作
	if(l+1==r)return dis[r]-dis[l];//边界,返回(后手操作数-先手操作数)
	return max(1-F(l,r-1),dis[r]-(RMQs(l,r-1)-l));//转移
}

void get(){
	printf("%d\n",F(1,m));//答案为F(1,m),即初始状态先手操作
}

int main()
{//典中典模块化
	init();
	dfsinit();
	STinit();
	get();
	return 0;
}
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值