简洁的架构还能高效和准确?清华&华为提出新型残差循环超分模型:RRN!

在这里插入图片描述
论文:Revisiting Temporal Modeling for Video Super-resolution
代码:https://github.com/junpan19/RRN

看点

本文提出了一种简洁而又高效的超分架构,在测试集上一帧只需45ms PSNR就可以达到27.69,具有很大的实用价值,亮点如下:

  • 以往已经提出了许多基于深度学习的视频超分辨率(video super-resolution,VSR)方法,但是由于使用不同的损失函数或训练集,因此很难直接比较这些方法。本文统一的研究和比较了三种时域建模方法:早期融合的2D CNN、慢融合的3D CNN和RNN。
  • 提出了一种新的残差循环网络(RRN),利用残差稳定RNN的训练,同时提高超分辨率性能,在三个基准测试集上均达到了SOTA。

在这里插入图片描述

时域融合模型

2D CNN:采用了几个改进的2D残差块,每个块由3×3卷积层和ReLU组成。模型以2T+1个连续帧为输入,首先先在通道维度串联,然后通过一批残差块,输出shape大小为H×W×Cr2的残差特征图,通过depth-to-space上采样四倍得到残差图像Rt,和双三次上采样的中心帧相加,得到HR图像。
在这里插入图片描述
3D CNN:与2D CNN不同的是,在3D CNN中,使用3×3×3的卷积层来提取时空信息。此外,为了防止帧数减少,我们在时间轴上增加两个像素值为零的帧。
在这里插入图片描述
RNN:时间步骤t处的输入有三部分:(1)先前的输出ot−1,(2)先前隐藏状态ht−1(3)两个相邻帧 I t − 1 I_{t-1} It1 I t I_{t} It。RNN可以利用上一层的互补信息,进一步细化第t时间步的高频纹理细节。然而,RNN中存在梯度消失的问题。为了解决这一问题,本文提出了一种新的循环网络(RRN),它的内部采用残差块(一个卷积层、一个ReLU层和另一个卷积层组成)。这种设计保证了信息流的流畅性,并具有长时间保留文本信息的能力,使得RNN更容易处理较长的序列,同时减少了梯度消失的风险。在这里插入图片描述
其中σ(·)为ReLU函数。 g ( x ^ k − 1 ) = x ^ k − 1 g(\hat x_{k-1})=\hat x_{k-1} g(x^k1)=x^k1 F ( x ^ k − 1 ) F(\hat x_{k-1}) F(x^k1)为要学习的残差图。

在这里插入图片描述

实验

实施细节
RRN在时间 t 0 t_0 t0时,先前的估计被初始化为零。三个模型均使用L1损失函数。使用Vimeo-90k作为训练集,对数据集进行BD降质以及crop为64×64的预处理。
量化评估与消融实验
作者考虑了两个网络深度不同的模型进行建模。S代表5个堆叠的模块,L则代表10个。下图可以看出不管是在运行时间、运算复杂度还是PSNR值上,RRN相比其他时域建模方法都具有显著的优势。
在这里插入图片描述
对是否为残差块和残差块的个数的消融实验,可以看出残差块能有效的抑制梯度消失。
在这里插入图片描述
与其他模型的对比,可以发现RRN都达到了STOA。
在这里插入图片描述

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值