LCA(最近公共祖先) 算法笔记

0x00 前置知识

建图,倍增,DFS

0x10 引入

我们可以考虑这样一个问题,在一个确定根节点的树形结构中,如何求任意两个结点的最近公共祖先(Lowest Common Ancestor)。

本文使用LCA简称最近公共祖先
使用(a,b)表示节点对

以下是一个树形结构的示意图,我们试求每个节点的LCA:
在这里插入图片描述

问题a.求(5,6)的LCA
很显然,节点5和节点6的父节点为3,是他们的 L C A LCA LCA,而节点1虽然是他们的共同祖先节点,但不为最近的祖先节点。
问题b.求(4,2)的LCA
节点4的父亲节点即为结点2,所以节点2是他们的 L C A LCA LCA
问题c.求(4,5)的LCA
由图上易看出 L C A LCA LCA为节点2,为了不找到他们 L C A LCA LCA的祖先节点,比如节点1。我们的想法是先查找深度更大的节点(如节点5)。直到查找位置与另一节点(如节点4)深度一致时,再将问题转换为问题a即可。这也是我们求 L C A LCA LCA的基本方法。

对于一般的问题,可以用 D F S DFS DFS实现查找。如果该树形结构只有两条链,那么该方法最坏时间复杂度为 O ( n ) O(n) O(n)。如果有 q q q次查询,时间复杂度为 O ( q n ) O(qn) O(qn)。在 n ≥ 100000 , q ≥ 100000 n\ge 100000,q\ge 100000 n100000,q100000即会超时。

0x20 倍增优化

很容易分析出问题的关键在如何快速使得查询节点的深度一致,我们想到的方法是倍增。我们假设有节点对(x,y)(其中x深度更大)。我们可以每次给查找位置缩小1,2,4,8,16…的深度,快速使得两者相等。

0x30 代码实现

0x31 声明

const int MAXN=300005;
int Log2[MAXN], fa[MAXN][20], dep[MAXN];
bool vis[MAXN];

vis[MAXN]作为dfs的标记数组,防止重复遍历节点。
Log2[MAXN]存储所需要的 l o g 2 x log_2x log2x的值,相较于log2()函数要快。
fa[x][y]存储该节点的祖先节点。包括它深度减 2 0 , 2 1 , 2 2 . . . 2^0,2^1,2^2... 202122...的节点,其中,x为该节点的标号,y为上述2的指数。特别的,该节点的父亲节点被记作f[cur][0]
dep[MAXN]记录该节点的深度。
fa的第二维大小不应小于log2(MAXN)

0x32 建图

struct Edge
{
    int to, w, next;
}edges[MAXM<<1];
int head[MAXN], cnt;
inline void add(int from, int to, int w=1)
{
    edges[++cnt].w = w;
    edges[cnt].to = to;
    edges[cnt].next = head[from];
    head[from] = cnt;
}

我们使用图结构可以更简单的实现题设,这一个比较标准的链式向前星建图。
需要注意的是,需要建一个无向图,边的空间要乘以2(如edges[MAXM<<1])。

以后应该会补一下图的笔记,这里先不赘述了

0x33 预处理父亲节点

void dfs(int cur, int fath = 0)
{
    if (vis[cur])
        return;
    vis[cur] = true;
    // sign
    dep[cur] = dep[fath] + 1;
    fa[cur][0] = fath;
    for (int i = 1; i <= Log2[dep[cur]]; ++i)
        fa[cur][i] = fa[fa[cur][i - 1]][i - 1];
    for (int eg = head[cur]; eg != 0; eg = edges[eg].next)
        dfs(edges[eg].to, cur);
}

先用一个dfs遍历整张图,dep[cur] = dep[fath] + 1标记每个节点的深度,孩子节点比父亲节点深度加1。标记父亲节点。
其中核心的思想是:

for (int i = 1; i <= Log2[dep[cur]]; ++i)
        fa[cur][i] = fa[fa[cur][i - 1]][i - 1];

由于 2 n − 1 ⋅ 2 n − 1 = 2 n 2^{n-1}·2^{n-1}=2^n 2n12n1=2n,我们求出当前节点 v v v的深度减 2 i − 1 2^{i-1} 2i1的节点 v ′ v' v,再去求节点 v ′ v' v的深度减 2 i − 1 2^{i-1} 2i1的节点,就能求出当前节点 v v v的深度减 2 i 2^{i} 2i的节点。

最后dfs继续遍历整张图即可。
预处理的时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)

LCA核心

int lca(int a, int b)
{
    if (dep[a] > dep[b])
        swap(a, b);
    while (dep[a] != dep[b])
        b = fa[b][Log2[dep[b] - dep[a]]];
    if (a == b)
        return a;
    for (int k = Log2[dep[a]]; k >= 0; k--)
        if (fa[a][k] != fa[b][k])
            a = fa[a][k], b = fa[b][k];
    return fa[a][0];
}

我们默认a节点的深度大,否则就交换。每当节点a,节点b的深度不等时,取出当前节点与b节点的深度差值,对其取log2,即得最大倍增的指数 i i i,求该节点深度减 2 i 2^{i} 2i的节点。反复操作,使得深度相等。

当a,b相等时,返回其中之一即可。

否则,对当前深度取log2,求该节点深度减 2 i 2^{i} 2i的节点,如果两节点符合问题a(见上文)的最简情况,即可返回。
查询的时间复杂度为 O ( l o g n ) O(logn) O(logn)

在这里插入图片描述

如求(5,4)的LCA,深度差为1, l o g 2 1 = 0 log_21=0 log21=0,所以取到5的父亲节点3。现在两者深度相等,发现符合最简情况,返回节点2。

记得初始化Log2数组

for (int i = 2; i <= n; ++i)
        Log2[i] = Log2[i / 2] + 1;

dfs从根节点开始搜

0x40 模板

P3379【模板】最近公共祖先

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll MOD = 998244353;
const ll INF = 0x3f3f3f3f;
// <------------------------------->
#define endl "\n"
#define space " "
#define IOS ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
#define HACK freopen("test.in", "r", stdin);freopen("test.out", "w", stdout);
#define RT double rtime = 1.0 * clock() / CLOCKS_PER_SEC;cout<<"\nRuntime: "<<rtime<< " s.\n";
#define debug(x) cout<<"target is "<<x<<endl
#define debug_arr(arr) for(auto x:arr) cout<<x<<" "; cout<<"\n";
// <------------------------------->
const int MAXN=500005;
const int MAXM=500005;

int Log2[MAXN], fa[MAXN][20], dep[MAXN];
bool vis[MAXN];
// <------------------------------->
struct Edge
{
    int to, w, next;
}edges[MAXM<<1];
int head[MAXN], cnt;
inline void add(int from, int to, int w=1)
{
    edges[++cnt].w = w;
    edges[cnt].to = to;
    edges[cnt].next = head[from];
    head[from] = cnt;
}
// <------------------------------->
void dfs(int cur, int fath = 0)
{
    if (vis[cur])
        return;
    vis[cur] = true;
    dep[cur] = dep[fath] + 1;
    fa[cur][0] = fath;
    for (int i = 1; i <= Log2[dep[cur]]; ++i)
        fa[cur][i] = fa[fa[cur][i - 1]][i - 1];
    for (int eg = head[cur]; eg != 0; eg = edges[eg].next)
        dfs(edges[eg].to, cur);
}
int lca(int a, int b)
{
    if (dep[a] > dep[b])
        swap(a, b);
    while (dep[a] != dep[b])
        b = fa[b][Log2[dep[b] - dep[a]]];
    if (a == b)
        return a;
    for (int k = Log2[dep[a]]; k >= 0; k--)
        if (fa[a][k] != fa[b][k])
            a = fa[a][k], b = fa[b][k];
    return fa[a][0];
}

int main()
{
    IOS;
    #ifdef LOCAL_JUDGE
    HACK;
    #endif

    int n,m,root;
    cin>>n>>m>>root;
    for(int i=0;i<n-1;++i)
    {
        int a,b;
        cin>>a>>b;
        add(a,b);
        add(b,a);
    }

    for (int i = 2; i <= n; ++i)
        Log2[i] = Log2[i / 2] + 1;
    dfs(root);

    for(int i=0;i<m;++i)
    {
        int a,b;
        cin>>a>>b;
        cout<<lca(a,b)<<endl;
    }

    #ifdef LOCAL_JUDGE
    RT;
    #endif
    return 0;
}

0x50 另

有空再更例题吧
=)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值