LCS时间复杂度O(NlogN)

整理了下:

LCS(Longest Common Subsequences)最长公共子序列用一般的动态规划时间复杂度O(N^2), 但经过优化可以达到O(NlogN),下面是转载集训队某人的最长递增子序列解题报告。

 

  先回顾经典的O(n^2)的动态规划算法,设A[i]表示序列中的第i个数,F[i]表示从1i这一段中以i结尾的最长上升子序列的长度,初始时设F[i] = 0(i = 1, 2, ..., len(A))。则有动态规划方程:F[i] = max{F[i], F[j] + 1} (j = 1, 2, ..., i - 1, A[j] < A[i])

 

  现在,我们仔细考虑计算F[i]时的情况。假设有两个元素A[x]A[y],满足

 

   (1)x < y < i

 

      (2)A[x] < A[y] < A[i]

 

      (3)F[x] = F[y]

 

  此时,选择F[x]和选择F[y]都可以得到同样的F[i]值,那么,在最长上升子序列的这个位置中,应该选择A[x]还是应该选择A[y]呢?

 

  很明显,选择A[x]比选择A[y]要好。因为由于条件(2),在A[x+1] ... A[i-1]这一段中,如果存在A[z]A[x] < A[z] < a[y],则与选择A[y]相比,将会得到更长的上升子序列。

 

  再根据条件(3),我们会得到一个启示:根据F[]的值进行分类。对于F[]的每一个取值k,我们只需要保留满足F[i] = k的所有A[i]中的最小值。设D[k]记录这个值,即D[k] = min{A[i]} (F[i] = k)PSk长上升子序列最小的值,以便获得更长的上升子序列

 

  注意到D[]的两个特点:

 

  (1) D[k]的值是在整个计算过程中是单调不上升的。

  (2) D[]的值是有序的,即D[1] < D[2] < D[3] < ... < D[n]

 

  利用D[],我们可以得到另外一种计算最长上升子序列长度的方法。设当前已经求出的最长上升子序列长度为len。先判断A[i]D [len]。若A[i] > D[len],则将A[i]接在D[len]后将得到一个更长的上升子序列,len = len + 1 D[len] = A[i];否则,在D[1]..D[len]中,找到最大的j,满足D[j] < A[i]。令k = j + 1,则有D[j] < A[i] <= D[k],将A[i]接在D[j]后将得到一个更长的上升子序列,同时更新D[k] = A[i]。最后,len即为所要求的最长上升子序列的长度。

 

  在上述算法中,若使用朴素的顺序查找在D[1]..D[len]查找,由于共有O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的时间复杂度为O(n^2),与原来的算法相比没有任何进步。但是由于D[]的特点(2),我们在D[]中查找时,可以使用二分查找高效地完成,则整个算法的时间复杂度下降为O(nlogn),有了非常显著的提高。需要注意的是,D[]在算法结束后记录的并不是一个符合题意的最长上升子序列!

 

  这个算法还可以扩展到整个最长子序列系列问题,整个算法的难点在于二分查找的设计,需要非常小心注意。

PS:搞的时候可以初始化D[]数组值为0.

/*读者的code*/

#include <iostream>

using namespace std;

/*

功能:

       求最长子序列 nlogn  算法 

        

      a[] 表示输入序列  n 序列长度  序列下标1开始 flag:LIS_UP 严格上升  LIS_NOTDOWN 非下降       

      call: printf("%d/n",LIS_UP(a,n,LIS_UP)); 严格上升

      call;printf("%d/n",LIS_UP(a,n,LIS_NOTDOWN));非下降

*/

typedef int ElementType;

#define LIS_UP 0   //严格上升

#define LIS_NOTDOWN 1 //非下降

    int LIS(ElementType *a,int n,int flag)

    {

        int i;

        ElementType *d = new ElementType[n+1];

        for (i=0;i<=n;i++)d[i]=0;

        int len=1;

        d[1]=a[1];

        for (i=2;i<=n;i++)

        {

            int l=0,h=len;

                     if(flag==LIS_NOTDOWN)

                     {

                            if (d[len]<=a[i])

                   {

                       d[++len]=a[i];

                       continue;

                   }

                     }

            while (l<=h)

            {

                int mid=(l+h)/2;

                if (d[mid]<a[i])

                {

                    l=mid+1;

                }

                else if(d[mid]>a[i])

                {

                    h=mid-1;

                }

                else

                {

                                   l=mid;break;

                            }

            }

            d[l]=a[i];

            if (l>len)len++;

        }

        delete[] d;

        return len;

    }

 

 

  最长公共子序列向最长递增子序列退化:

 

  设有序列AB。记序列A中各个元素在B中的位子(降序排列),然后按在A中的位置依次列出然后求A的最长递增子序列。

PS

A串位置              1 2 3 4

                    A: 4 3 5 2

                    B: 2 5 4 3

B串位置:          1 2 3 4

A串在B位置  3 4 2 1  因为B串已经顺序了,只要求出这行的最长递增子序列 就是最长公共子序列的长度了。

  例如:有A={a,b,a,c,x}B={b,a,a,b,c,a}则有a={6,3,2},b={4,1},c={5};x=/;(注意降序排列)

 

然后按A中次序排出{a(6,3,2),b(4,1),a(6,3,2),c(5),x()}={6,3,2,4,1,6,3,2,5};对此序列求最长递增子序列即可

 

推荐题目:

POJ 2553

http://codeforces.com/contest/67/problem/D

poj 1836

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

helihui123

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值