Pycharm 远程连接 Docker

本文介绍了如何使用PyCharm远程连接到Docker容器进行开发和调试。首先解释了为何要使用PyCharm远程连接Docker,接着详细阐述了Docker的安装过程,特别是针对GPU支持的配置。然后,文章展示了如何在PyCharm中配置连接到Docker容器,包括设置SSH端口映射、安装SSH服务和配置PyCharm的远程解释器。最后,提到了文件的同步设置,使得可以在本地与Docker容器之间方便地上传和下载文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


title: Pycharm 远程连接 Docker
tags:


Pycharm 远程连接 Docker


引用: pycharm连接远程linux服务器的docker

为什么要用pycharm远程连接, docker

  1. 使用docker可以节省安装深度学习环境的时间。

  2. pycharm远程连接为了方便debug

安装Docker

  1. 首先要有一台服务器,最好装linux系统(推荐centos,稳定,当然稳定就意味着万年不更新)安装显卡驱动。

  2. 安装方式docker挺简单的,最好安装nvidia-docker,方便调用GPU,

  3. pull下来一个镜像。

有空的话可以写一篇docker相关的博客(不过如果只是pull下来一个深度学习环境,貌似没啥好写的)

pycharm连接docker

  1. 首先运行容器,以我的服务器实际运行命令为例:
docker run -p 6009:6006 -p 23:22 --name="torch-remote" -v /
### 配置 PyCharm 使用 SSH 连接到远程 Docker 容器 为了使 PyCharm 能够通过 SSH 访问并管理位于远程服务器上的 TensorFlow GPU Docker 容器,需遵循特定设置流程。此过程涉及调整服务器端口映射以防止冲突,并确保目标容器内已准备好必要的开发环境。 #### 设置远程服务器与Docker容器间的SSH通信 由于直接利用标准22号端口可能导致主机与容器间的服务竞争问题,因此建议重新指定一个不常用的高编号端口作为替代方案;文中提到的选择是42022端口用于转发来自外部网络至内部Docker实例内的SSH服务请求[^1]。 #### 创建支持SSH登录的自定义Docker镜像 对于希望实现从IDE无缝接入容器化应用的需求而言,在构建阶段就应考虑加入OpenSSH Server组件及相关配置文件,从而允许后续建立安全shell会话。具体做法可参照官方文档或其他教程编写适用于项目的`Dockerfile`脚本,其中包含安装openssh-server包、设定root密码(仅限测试用途)、暴露适当端口号等指令[^2]。 ```dockerfile FROM tensorflow/tensorflow:latest-gpu-py3 RUN apt-get update && \ apt-get install -y openssh-i 's/#PermitRootLogin prohibit-password/PermitRootLogin yes/' /etc/ssh/sshd_config EXPOSE 22/tcp CMD service ssh start && tail -f /dev/null ``` #### 在PyCharm中添加新的Remote Interpreter 打开项目解释器选项卡后点击齿轮图标选择“Add”,接着挑选“SSH Interpreter”。按照向导提示输入远程机器地址连同之前规划好的非标准端口数值(即42022),提供认证凭证完成身份验证环节。之后选取基于上述定制版基础之上运行着的目标容器作为Python执行上下文载体[^3]。 #### 测试连接稳定性及功能可用性 确认以上各项参数无误提交保存更改后,尝试编译简单程序片段检验整个链路是否通畅有效。如果一切正常,则表明已经成功搭建起由本地集成开发环境通往云端计算资源之间的桥梁。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值