【动态规划】LeetCode53. 最大子数组和

这篇博客介绍了如何使用动态规划求解给定整数数组中具有最大和的连续子数组。通过维护一个dp数组,记录以每个下标结尾的最大子数组和,并更新全局最大值,最终得到最大子数组和。示例展示了在不同输入数组下的计算过程和结果。
摘要由CSDN通过智能技术生成

题目

53. 最大子数组和

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

提示:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

代码

思路:搞清楚dp数组及递归关系

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        //dp[i]: 以下标i结尾的,最大和的连续子数组,其最大和
        vector<int> dp(nums.size(), 0);

        int result = 0;

        // 初始化
        dp[0] = nums[0];
        result = dp[0];

        for (int i = 1; i < nums.size(); i++) {
            dp[i] = max(nums[i], dp[i - 1] + nums[i]);

            if (dp[i] > result) result = dp[i];
        }

        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值