动手学深度学习Accumulator类

本文详细解读了《动手学深度学习》中Accumulator类的实现,通过实例展示了如何使用add方法进行数值累加,阐述了该类在softmax回归实现中的作用。
摘要由CSDN通过智能技术生成

对《动手学深度学习》3.6节(softmax回归的从零开始实现)中Accumulator类的一点理解

class Accumulator:  #@save
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]
metric = Accumulator(2)
print(f'初始的metric.data:{metric.data}')
metric.add(3,7)
print(f'第1次调用add后,metric.data:{metric.data}')
metric.add(5,8)
print(f'第2次调用add后,metric.data:{metric.data}')

输出结果:

初始的metric.data:[0.0, 0.0]
第1次调用add,metric.d
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值