csr_matrix,coo_matrix转化成torch.sparse matrix

本文介绍了如何将Scipy库中的CSR和COO矩阵转换为PyTorch支持的稀疏矩阵格式,这对于在深度学习中处理大规模稀疏数据尤其重要。了解这种转换对于有效地在神经网络中利用稀疏数据至关重要。
摘要由CSDN通过智能技术生成
	#adjM is csr_matrix
    coo_adj=adjM.tocoo()
    values = coo_adj.data
    indices = np.vstack((coo_adj.row, coo_adj.col))
    i = torch.LongTensor(indices)
    v 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值