一致性正则化, KL散度

一致性正则

Consistency Regularization 的主要思想是:对于一个输入,即使受到微小干扰,其预测都应该是一致的。
机器学习模型也应该对这种扰动具有鲁棒性。这通常通过最小化对原始输入的预测与对该输入的扰动版本的预测之间的差异来实现。可以是均方误差或KL散度或任何其他距离度量。[1]

这些随机性或扰动分类如下[2]:

  • 常规的数据增强, 如图像翻转,加随机噪音
  • 基于GAN
  • 时序移动平均
  • 同一模型多次预测时,Dropout层随机舍弃
  • 多模型
  • 对抗样本扰动Adversarial Example
  • 高级数据增强(基于强化学习或自监督学习)
  • 数据线性混合

如何衡量两个事件/分布之间的不同:KL散度

kl散度 = 交叉熵 - 熵[3]

Reference

[1] https://posts.careerengine.us/p/5f918342a94f955560289d1c
[2] http://blog.zhimind.com/consistency-regularization.html
[3] https://blog.csdn.net/fantacy10000/article/details/90668839

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值