关于图神经网络图正则化的再思考

《Rethinking Graph Regularization for Graph Neural Networks》

PaperInfo

  • 作者:Han Yang, Kaili Ma, James Cheng
  • 单位:香港中文大学
  • 发表时间:2020年9月4日
    paper

Abstract

图的拉普拉斯正则化项通常用于半监督表示学习,以提供模型f(X)的图结构信息。然而,随着最近图神经网络(GNN)的流行,将图结构A直接编码成一个模型,即f(A,X),已经成为更常用的方法。同时,我们证明了图拉普拉斯正则化对现有的GNN几乎没有好处,并提出了一种简单但非平凡的图拉普拉斯正则化的变体,称为传播正则化(P-REG),以提高现有GNN模型的性能。我们通过形式化分析表明,P-REG不仅为GNN注入了传统的图拉普拉斯正则化所不能捕捉到的额外信息,而且具有相当于无限深度图卷积网络的容量。我们证明了P-REG可以有效地提高现有GNN模型在许多不同数据集的节点级和图形级任务上的性能。

1 Introduction

半监督节点分类是图学习中最常用、最重要的问题之一。许多有效的方法已经被提出用于通过向特征映射模型f(X)添加正则化项(例如,拉普拉斯正则化)来进行节点分类: F ( X ) : R N × F → R N × C F(X):R^{N×F}→R^{N×C} F(X)RN×FRN×C,其中N是节点数量,F是节点特征的维度,C是预测类别的数量,并且 X ∈ R N × F X∈R^{N×F} XRN×F是节点特征矩阵。这些方法的一个已知缺点是模型F本身仅对图中每个节点的特征进行建模,而没有考虑节点之间的关系。基于相邻节点可能共享同一类标签的假设,它们依赖正则化项来捕捉图的结构信息。然而,这一假设在许多现实世界的图表中并不成立,因为这些图表中的节点之间的关系可能很复杂,如(Kipf和Well 2017)中所指出的。这推动了早期图形神经网络(GNN)模型的发展,例如图形卷积网络(GCN)(Kipf和Welling2017)。

许多GNN将图的结构信息直接编码到它们的模型中为 f ( A , X ) : ( R N × N , R N × F ) → R N × C f(A,X):(R^{N×N},R^{N×F})→R^{N×C} f(AX)(RN×NRN×F)RN×C,其中 A ∈ R N × N A∈R^{N×N} ARN×N是图的邻接矩阵。然后,他们通过最小化有监督的分类损失来简单地训练模型,而不使用图的正则化。然而,在这项工作中,我们提出了一个问题:图正则化是否也能像传统节点分类模型那样提高现有GNN模型的性能?

我们对这个问题给出了肯定的回答。我们证明了现有的GNN已经捕捉到了传统的图拉普拉斯正则化所能提供的图结构信息。因此,我们提出了一种新的图正则化方法–传播正则化(P-REG),它是基于拉普拉斯正则化的图正则化的变体,它为图中的节点提供新的监督信号。此外,我们还证明了P-REG具有与无限深度GCN相同的能力,这意味着P-REG使每个节点能够从更远的节点获取信息(与深度GCN一样,但更灵活,可以避免过度平滑,并且计算成本要低得多)。我们通过实验验证了P-reg作为提高现有GNN模型性能的通用工具的有效性。我们相信,我们的工作可以为GNN框架设计提供一个新的方向。

2 Propagation-Regularization

附录A中还给出了本文使用的符号及其描述。为了便于说明,我们使用一个两层的GCN模型 f 1 f_{1} f1作为GNN的例子。GCN模型f1可以表示为 f 1 ( A , X ) = f_{1}(A, X)= f1(A,X)= A ^ ( σ ( A ^ X W 0 ) ) W 1 \hat{A}\left(\sigma\left(\hat{A} X W_{0}\right)\right) W_{1} A^(σ(A^XW0))W1,其中 W 0 ∈ R F × H W_{0} \in \mathbb{R}^{F \times H} W0RF×H W 1 ∈ R H × C W_{1} \in \mathbb{R}^{H \times C} W1RH×C是线性映射矩阵, H H H是隐藏单元的大小。 A = D − 1 A A=D^{−1}A A=D1A是归一化邻接矩阵,其中 D ∈ R N × N D∈R^{N×N} DRN×N是对角度矩阵, D i i = ∑ j = 1 N A i j D_{i i}=\sum_{j=1}^{N} A_{i j} Dii=j=1NAij and D i j = 0 D_{i j}=0 Dij=0 if i ≠ j . σ i \neq j . \quad \sigma i=j.σ是激活函数。F1将图的结构和结点特征作为输入,然后输出 Z = f 1 ( A , X ) ∈ R N × C Z=f_{1}(A, X) \in \mathbb{R}^{N \times C} Z=f1(A,X)RN×C P i j = exp ⁡ ( Z i j ) ∑ k = 1 C exp ⁡ ( Z i k ) P_{i j}=\frac{\exp \left(Z_{i j}\right)}{\sum_{k=1}^{C} \exp \left(Z_{i k}\right)} Pij=k=1Cexp(Zik)exp(Zij) for i = 1 , … , N i=1, \ldots, N i=1,,N and j = 1 , … , C j=1, \ldots, C j=1,,C。这里, P ∈ R N × C P \in \mathbb{R}^{N \times C} PRN×C是所有节点的预测类别后验概率。通过输出 Z Z Z 的输出 f 1 f_{1} f1的进一步传播,将获得 Z ′ = A ^ Z ∈ Z^{\prime}=\hat{A} Z \in Z=A^Z R N × C \mathbb{R}^{N \times C} RN×C.对应的softmax最大概率输出 Z ′ Z^{\prime} Z Q i j = exp ⁡ ( Z i j ′ ) ∑ k = 1 C exp ⁡ ( Z i k ′ ) Q_{i j}=\frac{\exp \left(Z_{i j}^{\prime}\right)}{\sum_{k=1}^{C} \exp \left(Z_{i k}^{\prime}\right)} Qij=k=1Cexp(Zik)exp(Zij) for i = 1 , … , N i=1, \ldots, N i=1,,N and j = 1 , … , C j=1, \ldots, C j=1,,C给出。

传播正则化的定义如下: L P − r e g = 1 N ϕ ( Z , A ^ Z ) , \mathcal{L}_{P-r e g}=\frac{1}{N} \phi(Z, \hat{A} Z), LPreg=N1ϕ(

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在TensorFlow中,可以通过添加正则化方式来对神经网络进行正则化。正则化的目的是通过限制权重的大小,来防止模型过拟合训练数据中的随机噪音。TensorFlow提供了L1正则化和L2正则化两种方式。 L1正则化会使得部分参数变得稀疏,即将一些参数调整为0,相当于进行了特征选择的功能。而L2正则化不会产生稀疏性,当参数很小的时候,参数的平方可以忽略,不会进一步将参数调整为0。另外,L1正则化的计算公式不可导,而L2正则化可导,这对于优化模型时计算损失函数的偏导数是有帮助的。 在实际应用中,也可以同时使用L1正则化和L2正则化,将它们进行组合。通过在计算中保存一组实体,TensorFlow提供了集合的方式来解决正则化在复杂神经网络中计算损失函数的复杂性和可读性问题。 因此,在TensorFlow中,可以使用L1正则化和L2正则化来对神经网络进行正则化,以防止过拟合的问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [TensorFlow keras卷积神经网络 添加L2正则化方式](https://download.csdn.net/download/weixin_38681736/12851829)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [TensorFlow优化模型之正则化](https://blog.csdn.net/sinat_29957455/article/details/78397601)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值