「Codeforces 632F」Magic Matrix

称一个矩阵为魔法矩阵,当且仅当满足一下三点:

  1. ∀ 1 ≤ i , j ≤ n , a i , j = a j , i \forall 1 \le i,j \le n, a_{i,j}=a_{j,i} ∀1i,jn,ai,j=aj,i
  2. ∀ 1 ≤ i ≤ n , a i , i = 0 \forall 1 \le i \le n, a_{i,i} = 0 ∀1in,ai,i=0
  3. ∀ 1 ≤ i , j , k ≤ n , a i , j ≤ max ⁡ ( a i , k , a k , j ) \forall 1 \le i,j,k\le n, a_{i,j} \le \max(a_{i,k}, a_{k,j}) ∀1i,j,kn,ai,jmax(ai,k,ak,j)
    询问一个矩阵是否为魔法矩阵
    n ≤ 2500 n \le 2500 n2500

将矩阵抽象成一个有 n n n 个点 n 2 n^2 n2 条边的无向完全图,边权为 a i , j a_{i,j} ai,j
f i , j f_{i,j} fi,j 表示从 i i i 出发到 j j j 的所有路径上最长的边的最小值,显然 a i , j ≥ f i , j a_{i,j} \ge f_{i,j} ai,jfi,j
根据题意,因为 a i , j ≤ max ⁡ ( a i , k , a k , j ) a_{i,j} \le \max(a_{i,k}, a_{k,j}) ai,jmax(ai,k,ak,j),而 a i , k ≤ max ⁡ ( a i , l , a l , k ) a_{i,k} \le \max(a_{i,l},a_{l,k}) ai,kmax(ai,l,al,k),所以 a i , j ≤ max ⁡ ( a i , k 1 , a k 1 , k 2 . . . a k m , j ) a_{i,j} \le \max(a_{i,k_1}, a_{k_1,k_2}...a_{k_m, j}) ai,jmax(ai,k1,ak1,k2...akm,j),即 a i , j ≤ f i , j a_{i,j} \le f_{i,j} ai,jfi,j
所以 a i , j = f i , j a_{i,j} = f_{i,j} ai,j=fi,j,这样就只要用 M S T \mathrm{MST} MST D F S \mathrm{DFS} DFS 就可以在 O ( n 2 ) O(n^2) O(n2) 判断条件了。

#include <cstdio>
#include <cstring>
#define Min(_A, _B) (_A < _B ? _A : _B)
#define Max(_A, _B) (_A > _B ? _A : _B)
#define R register
int n, a[2510][2510];
bool vis[2510]; int dis[2510], from[2510], Point[2510], Next[5010], To[5010], W[5010], q;
void Add(R int u, R int v, R int w)
{
	Next[++q] = Point[u]; Point[u] = q; To[q] = v; W[q] = w;
	Next[++q] = Point[v]; Point[v] = q; To[q] = u; W[q] = w;
}
bool DFS(R int u, R int from, R int pos, R int val)
{
	if(a[pos][u] != val) return 1; 
	for(R int j = Point[u]; j; j = Next[j]) if(To[j] != from && DFS(To[j], u, pos, Max(W[j], val))) return 1;
	return 0;
}
int main()
{
	scanf("%d", &n);
	for(R int i = 1; i <= n; ++i)
		for(R int j = 1; j <= n; ++j)
			scanf("%d", &a[i][j]);
	for(R int i = 1; i <= n; ++i)
		for(R int j = 1; j <= n; ++j)
			if(a[i][j] != a[j][i])
			{
				puts("NOT MAGIC");
				return 0;
			}
	memset(dis, 127, sizeof(dis)); dis[1] = 0;
	for(R int i = 1; i <= n; ++i)
	{
		R int pos = 0;
		for(R int j = 1; j <= n; ++j) if(!vis[j] && dis[pos] > dis[j]) pos = j;
		if(i > 1) Add(pos, from[pos], dis[pos]);
		vis[pos] = 1;
		for(R int j = 1; j <= n; ++j) if(!vis[j] && a[pos][j] < dis[j])
		{ from[j] = pos; dis[j] = a[pos][j]; }
	}
	for(R int i = 1; i <= n; ++i) if(DFS(i, i, i, 0)){ puts("NOT MAGIC"); return 0; }
	puts("MAGIC");
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值