[CF632F]Magic Matrix

122 篇文章 0 订阅

题目

传送门 to luogu

思路

注意 a i j = a j i a_{ij}=a_{ji} aij=aji 这个条件很舒服,让我们有思路将 a i j a_{ij} aij 试做图上 i i i j j j 的无向边权值。抛开矩阵背景吧!

显然 x ≤ y x\le y xy max ⁡ ( n , x ) ≤ max ⁡ ( n , y ) \max(n,x)\le\max(n,y) max(n,x)max(n,y) 。一个必要条件浮出水面:

a i l ≤ max ⁡ ( a i k , a k l ) ≤ max ⁡ [ max ⁡ ( a i j , a j k ) , a k l ] = max ⁡ ( a i j , a j k , a k l ) a_{il}\le\max(a_{ik},a_{kl})\le\max[\max(a_{ij},a_{jk}),a_{kl}]=\max(a_{ij},a_{jk},a_{kl}) ailmax(aik,akl)max[max(aij,ajk),akl]=max(aij,ajk,akl)

可以看出,这是有传递性的。于是,若 i , j i,j i,j 之间存在一条路径,只由边权小于 a i j a_{ij} aij 的边构成,则 N O T    M A G I C \tt NOT\;MAGIC NOTMAGIC

继续,我们可以证明这是充分的。题目中的条件本就是 a i j ≤ max ⁡ ( a i k , a k j ) a_{ij}\le\max(a_{ik},a_{kj}) aijmax(aik,akj) ,难道这不是一种路径?

所以,我们获得了充要条件:权值小于 a i j a_{ij} aij 的边不能使 i , j i,j i,j 联通。这不是最小生成树的过程吗?

于是我们获得了 O ( n 2 log ⁡ n ) \mathcal O(n^2\log n) O(n2logn) 的算法,解决了此题。瓶颈在于排序。


2021 / 3 / 1    u p d a t e \tt{2021/3/1\;update} 2021/3/1update:为什么不用 p r i m \rm prim prim 呢?我当时是脑子被门夹了还是什么?

如果一个点的 d i s dis dis 被更新了两次,那就是 N O T    M A G I C \tt NOT\;MAGIC NOTMAGIC 的,多简单!

代码

#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
inline int readint(){
	int a = 0; char c = getchar(), f = 1;
	for(; c<'0'||c>'9'; c=getchar())
		if(c == '-') f = -f;
	for(; '0'<=c&&c<='9'; c=getchar())
		a = (a<<3)+(a<<1)+(c^48);
	return a*f;
}
template < typename T >
void getMax(T&a,const T&b){if(a<b)a=b;}
template < typename T >
void getMin(T&a,const T&b){if(b<a)a=b;}

const int MaxN = 2501;
namespace ufs{
	int fa[MaxN];
	void init(int n){
		for(int i=1; i<=n; ++i)
			fa[i] = i;
	}
	int find(int a){
		if(a != fa[a])
			fa[a] = find(fa[a]);
		return fa[a];
	}
	bool linked(int a,int b){
		return find(a) == find(b);
	}
	void link(int a,int b){
		fa[find(a)] = find(b);
	}
}

struct Node{
	int x, y, val;
	bool operator < (const Node &that) const {
		return val < that.val;
	}
} node[MaxN*MaxN];

int n;
void kruskal(){
	sort(node+1,node+n*n+1);
	node[n*n+1].val = -1;
	ufs::init(n);
	for(int l=1,r=0; l<=n*n; l=r+1){
		while(node[r+1].val == node[l].val)
			++ r;
		if(node[l].val != 0)
		for(int i=l; i<=r; ++i)
			if(ufs::linked(node[i].x,node[i].y)){
				puts("NOT MAGIC"); return ;
			}
		for(int i=l; i<=r; ++i)
			ufs::link(node[i].x,node[i].y);
	}
	puts("MAGIC");
}

int main(){
	n = readint();
	for(int i=1; i<=n; ++i)
		for(int j=1; j<=n; ++j){
			Node &now = node[(i-1)*n+j];
			now.x = i, now.y = j;
			now.val = readint();
			if(i == j && now.val){
				puts("NOT MAGIC");
				return 0;
			}
		}
	kruskal();
	return 0;
}

后记

更有趣的性质:考虑 a i j , a j k , a k i a_{ij},a_{jk},a_{ki} aij,ajk,aki 三条边。不妨设 a i j a_{ij} aij 最大,因为本质是三元环上的最大边。那么我们有 a i j ≤ max ⁡ ( a j k , a k i ) a_{ij}\le\max(a_{jk},a_{ki}) aijmax(ajk,aki) ,可是 a i j ≥ max ⁡ ( a j k , a k i ) a_{ij}\ge\max(a_{jk},a_{ki}) aijmax(ajk,aki) ,故而 a i j ∈ { a j k , a k i } a_{ij}\in\{a_{jk},a_{ki}\} aij{ajk,aki}

可以看到,我们的每个三元环都是一个“等腰三角形”,且腰比底更长(至少不更短)。这是充要条件。

不过我没有以此想出算法。或许你可以试一试!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值