不同自定义的dataset,生成的dataloader用tqdm和enumerate如何读取

之前遇到的问题是,我自己定义了dataset的类,类似于下面的代码

class DealDataset(Dataset):
    """
        下载数据、初始化数据,都可以在这里完成
    """
    def __init__(self):
        xy = np.loadtxt('../dataSet/diabetes.csv.gz', delimiter=',', dtype=np.float32) # 使用numpy读取数据
        self.x_data = torch.from_numpy(xy[:, 0:-1])
        self.y_data = torch.from_numpy(xy[:, [-1]])
        self.len = xy.shape[0]
    
    def __getitem__(self, index):
        x_data=self.x_data[index]
        y_data=self.y_data[index]
        return {'x_data':x_data,'y_data':y_data}

    def __len__(self):
        return self.len

这样就在读取上非常迷惑,不知道用enumerate和tqdm要怎么读数据,搞清楚后在这里简要记录一下对应关系

1.return {'x_data':x_data,'y_data':y_data},

目前只会用enemerate读取

for i, data in enumerate(train_loader):
        x_data, y_data= data['x_data'], data['y_data']

2.把return改变,改为return self.x_data[index],self.y_data[index]

这样tqdm读取

for x_data,y_data in tqdm(train_loader):

enumerate读取

for idx,data in enumerate(train_loader):
    x_label=data[0]
    y_label=data[1]

另外,除了放在batch那里,tqdm也可以放在epoch的循环那里

for epoch in tqdm(range(100)):

PyTorch中,`Dataset``DataLoader`是用于加载预处理数据的两个重要类。`Dataset`用于定义数据集的格式如何获取数据,而`DataLoader`用于批量加载数据并进行数据增强。以下是一个使用`Dataset``DataLoader`加载自定义数据集的示例: ```python import torch from torch.utils.data import Dataset, DataLoader from torchvision import transforms from PIL import Image import os class CustomDataset(Dataset): def __init__(self, root_dir, transform=None): """ Args: root_dir (string): 数据的根目录 transform (callable, optional): 可选的转换 """ self.root_dir = root_dir self.transform = transform self.image_names = os.listdir(root_dir) def __len__(self): return len(self.image_names) def __getitem__(self, idx): img_name = os.path.join(self.root_dir, self.image_names[idx]) image = Image.open(img_name).convert('RGB') if self.transform: image = self.transform(image) return image # 定义数据转换 transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), ]) # 创建数据集实例 dataset = CustomDataset(root_dir='path_to_your_data', transform=transform) # 创建DataLoader dataloader = DataLoader(dataset, batch_size=4, shuffle=True, num_workers=4) # 使用DataLoader加载数据 for i, images in enumerate(dataloader): print(images.shape) if i == 0: break ``` 在这个示例中,我们首先定义了一个自定义的`Dataset`类`CustomDataset`,它继承自`torch.utils.data.Dataset`。在`__init__`方法中,我们初始化了数据集的根目录转换操作。在`__len__`方法中,我们返回数据集的大小。在`__getitem__`方法中,我们根据索引获取数据并进行转换。 然后,我们定义了一个数据转换操作`transform`,并创建了`CustomDataset`的实例。最后,我们使用`DataLoader`来批量加载数据并进行数据增强。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值