李宏毅 机器学习模型的可解释性 explainable ML

本文探讨了在机器学习中模型可解释性的重要性,指出尽管神经网络可能存在不可解释性,但我们仍倾向于使用它们并寻找解释方法。相较于线性模型,决策树在某些情况下提供更好的解释性,但当树变得复杂时,理解其决策路径又成为挑战。可解释性机器学习的目标是增强模型的透明度,如同心理学实验所示,人们往往需要理由来接受结果。博客讨论了如何在保持模型效能的同时追求可解释性。
摘要由CSDN通过智能技术生成

【李宏毅机器学习2021】机器学习模型的可解释性 (Explainable ML)_哔哩哔哩_bilibili

 

我们因为神经网络不可解释而不用他吗?

不,我们可以用强大的模型,并且尝试去解释他

那么比linear model更强大的可解释性的decision tree可以吗?

但其实decision tree也有的时候效果不好,且当decision tree太多的时候,我们也无法知道到底为什么要选择这个

 

 可解释性机器学习模型的目标

打印机心理学实验

人多出一个理由的时候,接受度就会更高,人就是需要一个理由,即使这个理由是把需求重复一遍

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值