268. Missing Number
Easy
62492891Add to ListShare
Given an array nums
containing n
distinct numbers in the range [0, n]
, return the only number in the range that is missing from the array.
Example 1:
Input: nums = [3,0,1] Output: 2 Explanation: n = 3 since there are 3 numbers, so all numbers are in the range [0,3]. 2 is the missing number in the range since it does not appear in nums.
Example 2:
Input: nums = [0,1] Output: 2 Explanation: n = 2 since there are 2 numbers, so all numbers are in the range [0,2]. 2 is the missing number in the range since it does not appear in nums.
Example 3:
Input: nums = [9,6,4,2,3,5,7,0,1] Output: 8 Explanation: n = 9 since there are 9 numbers, so all numbers are in the range [0,9]. 8 is the missing number in the range since it does not appear in nums.
Constraints:
n == nums.length
1 <= n <= 104
0 <= nums[i] <= n
- All the numbers of
nums
are unique.
Follow up: Could you implement a solution using only O(1)
extra space complexity and O(n)
runtime complexity?
class Solution:
def missingNumber(self, nums: List[int]) -> int:
"""
assert Solution().missingNumber([3, 0, 1]) == 2
assert Solution().missingNumber([9, 6, 4, 2, 3, 5, 7, 0, 1]) == 8
解题思路:异或的自反性,对所有nums数字异或,同时对[0,n]数字异或,结果就是缺少的数字
时间复杂度:O(n),空间复杂度:O(1)
别的解题思路:高斯求和公式 1+2+....+n = n(n+1)/2
"""
# mask = len(nums)
# for i in range(0, len(nums)):
# mask ^= i ^ nums[i]
# return mask
n = len(nums)
result = int(n * (n + 1) / 2)
for i in nums:
result -= i
return result