python升级3.11版本操作

一、卸载python


rm  -rf   /usr/bin/python3
rm  -rf   /usr/bin/pip3

二、安装升级openssl


源码包准备:wget https://www.openssl.org/source/openssl-1.1.1w.tar.gz
#备份当前的 SSH 配置文件和数据,以防升级失败或配置丢失
cp /etc/ssh/sshd_config /etc/ssh/sshd_config.backup
cp -r /etc/ssh /etc/ssh_backup
#解压下载的源码包并进入解压后的目录
tar -xzvf openssl-1.1.1w.tar.gz
cd openssl-1.1.1w
#运行以下命令编译和安装 OpenSSL
./config --prefix=/usr/local/openssl --openssldir=/usr/local/openssl shared zlib
make && make install
#将新安装的 OpenSSL 库路径添加到系统的动态链接库配置中
echo "/usr/local/openssl/lib" | sudo tee /etc/ld.so.conf.d/openssl-1.1.1.conf
ldconfig
/usr/local/openssl/bin/openssl version
#输出应显示类似以下内容
OpenSSL 1.1.1w  11 Sep 2023

若不行可以添加如下修改
 /usr/local/openssl/bin/openssl version
mv /usr/bin/openssl /usr/bin/openssl.bak20250203
ln -s /usr/local/openssl/bin/openssl /usr/bin/openssl
mv /usr/lib64/openssl /usr/lib64/openssl.bak20250223
mv /usr/lib64/libssl.so /usr/lib64/libssl.so.bak20250223
ln -s /usr/local/opensll/lib/libssl.so.1.1 /usr/lib64/libssl.so
ln -s /usr/local/openssl/include/openssl /usr/include/openssl
ln -s /usr/local/openssl/lib/libssl.so.1.1 /usr/lib64/libssl.so
ls /usr/local/opensll/lib/libssl.so.1.1
mv /usr/lib64/libssl.so libssl.so20250223
ln -s /usr/local/openssl/lib/libssl.so.1.1 /usr/lib64/libssl.so
echo "/usr/local/openssl/lib" >> /etc/ld.so.conf
ldconfig -v
ldconfig
openssl version

三、python3.11版本升级操作

#下载最新的软件安装包
wget https://www.python.org/ftp/python/3.11.0/Python-3.11.0.tgz

#解压缩安装包
tar -xzf Python-3.11.0.tgz

#安装源码编译需要的编译环境
yum -y install gcc zlib zlib-devel libffi libffi-devel

#可以解决后期出现的方向键、删除键乱码问题,这里提前避免。
yum -y install readline-devel

#安装openssl11,后期的pip3安装网络相关模块需要用到ssl模块。
yum -y install openssl-devel openssl11 openssl11-devel

#设置编译FLAG,以便使用最新的openssl库
export CFLAGS=$(pkg-config --cflags openssl11)
export LDFLAGS=$(pkg-config --libs openssl11)

#进入刚解压缩的目录
cd /root/Python-3.11.0

#指定python3的安装目录为 /usr/python 并使用ssl模块,指定目录好处是后期删除此文件夹就可以完全删除软件了。
注意:一定指定openssl路径,否则出现无法编译ssl报错
./configure --prefix=/usr/python  ./configure --prefix=/usr/local/python --with-openssl=/usr/local/openssl


#就是源码编译并安装了,时间会持续几分钟。
make
make install

#指定链接,此后我们系统的任何地方输入python3就是我们安装的
ln -s /usr/python/bin/python3 /usr/bin/python3
ln -s /usr/python/bin/pip3 /usr/bin/pip3

#这个最新版python3了,可看到版本信息
python3 --version 
pip3 -V

<think>好的,我现在需要帮助用户解决在OpenEuler 24.03 LTS SP1系统上部署Linly-Talker项目的问题,同时适配CUDA 1.28环境。首先,我得仔细分析用户的需求和提供的引用资料,确保解决方案的准确性。 首先,用户提到的OpenEuler 24.03 LTS SP1是一个较新的Linux发行版,可能使用较新的内核和库版本。而CUDA 1.28可能是指CUDA Toolkit 12.8,不过通常CUDA版本是像11.311.8、12.1这样的版本号,所以这里可能存在笔误。比如,用户可能是指CUDA 12.8,但需要确认是否该版本存在。目前最新的稳定版本是CUDA 12.5,因此可能需要进一步澄清。不过,假设用户确实需要CUDA 12.8或类似的版本,可能需要处理驱动和兼容性问题。 接下来,参考用户提供的引用,特别是引用[2]中的安装步骤,其中提到了安装PyTorch 1.12.1,对应CUDA 11.3。但用户现在需要适配CUDA 1.28(假设是12.8),所以需要考虑PyTorch版本是否支持该CUDA版本。例如,PyTorch 2.x可能支持CUDA 12.x。因此,可能需要调整PyTorch的安装命令,以匹配CUDA 12.8环境。 此外,OpenEuler系统可能使用dnf作为包管理器,而项目原来的安装步骤是基于Anaconda和conda的环境创建。需要确保在OpenEuler上安装必要的依赖库,比如ffmpeg、CUDA驱动、cuDNN等,并且这些库的版本与CUDA 12.8兼容。可能需要进行源码编译安装某些依赖项,特别是如果OpenEuler的官方仓库中没有预编译的包。 另一个考虑点是系统内核和驱动版本是否兼容CUDA 12.8。需要检查NVIDIA官方文档,确认OpenEuler 24.03的内核版本是否被支持,并安装相应的NVIDIA驱动。如果驱动不支持,可能需要升级内核或寻找其他解决方法。 此外,项目依赖的其他组件,如Whisper模型,可能需要特定的Python版本,这些库在CUDA 12.8下的兼容性也需要验证。可能需要调整requirements_app.txt中的依赖版本,或手动安装某些库的兼容版本。 最后,部署过程中可能会遇到环境变量配置、权限问题、路径设置等问题,需要逐步排查。例如,设置LD_LIBRARY_PATH以包含CUDA库路径,确保conda环境中正确识别GPU等。 总结下来,步骤可能包括: 1. 确认CUDA版本的正确性,安装对应的NVIDIA驱动。 2. 创建conda环境,安装适配CUDA 12.8的PyTorch版本3. 安装系统依赖,如ffmpeg,可能需要源码编译。 4. 调整项目依赖的Python版本,解决兼容性问题。 5. 处理可能出现的库路径和权限问题,确保项目运行环境正确配置。</think>### Linly-Talker在OpenEuler 24.03 LTS SP1的本地化部署方法 #### 一、环境准备 1. **系统兼容性验证** OpenEuler 24.03 LTS SP1默认使用Linux 6.x内核,需确保NVIDIA驱动版本≥535.129.03以支持CUDA 12.8[^4]。 ```bash nvidia-smi # 验证驱动版本 ``` 2. **CUDA 12.8环境配置** - 从NVIDIA官网下载CUDA 12.8安装包 - 安装完成后验证环境变量: ```bash echo $PATH | grep cuda-12.8 # 检查CUDA路径 nvcc --version # 确认CUDA编译器版本 ``` #### 二、依赖安装与适配 1. **创建Conda虚拟环境** ```bash conda create -n linly_oepnuler python=3.10 conda activate linly_oepnuler ``` 2. **PyTorch版本调整** 原项目使用CUDA 11.3对应的PyTorch 1.12.1,需替换为支持CUDA 12.8的版本: ```bash conda install pytorch==2.1.0 torchvision==0.16.0 torchaudio==0.13.0 pytorch-cuda=12.1 -c pytorch -c nvidia ``` 3. **系统级依赖编译** OpenEuler需手动编译安装部分依赖: ```bash sudo dnf install ffmpeg-devel libsndfile-devel git clone https://gitcode.com/gh_mirrors/li/Linly-Talker.git cd Linly-Talker pip install -r requirements_app.txt --no-cache-dir # 强制重新编译二进制扩展 ``` #### 三、兼容性修复 1. **CUDA算子适配** 若出现`CUDA kernel failed`错误,需修改`torch.utils.cpp_extension`加载参数: ```python # 在涉及CUDA扩展的代码中添加 torch.utils.cpp_extension.load(..., extra_cuda_cflags=["-O3", "--use_fast_math"]) ``` 2. **动态库路径配置** 在`~/.bashrc`中添加: ```bash export LD_LIBRARY_PATH=/usr/local/cuda-12.8/lib64:$LD_LIBRARY_PATH ``` #### 四、部署验证 ```bash python app.py --cuda_id 0 # 指定GPU运行 ``` 若输出`Successfully initialized CUDA context`则表示部署成功[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Stestack

你的鼓励是我最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值