第三章 线性代数知识回顾 (Linear Algebra review)
第一、二、三节
主要回顾了矩阵的元素和向量的定义,以及矩阵加法、矩阵标量乘法和 矩阵向量乘法。
第四节 矩阵乘法
主要回顾了矩阵与矩阵相乘的规则和计算方法。
并通过下图的例子阐述了矩阵乘法的用处,通过一次矩阵乘法可以进行大量运算。
如上图所示,已经知道四个房子的大小,并得到了三个不同的假设函数,现在需要预测房屋的价格,如果同时使用三个假设函数进行房价预测,采用矩阵乘法就会变得更加方便。左侧的矩阵代表不同房子的面积,中间的矩阵代表不同的假设函数,右侧的矩阵每一行代表着不同假设函数预测的房价。
第五节 矩阵乘法的性质
矩阵乘法不满足交换律但满足结合律,同时也介绍了单位矩阵I。
第六节 矩阵的转置和逆
如果一个矩阵A,它是方阵,且满足,则矩阵B就是矩阵A的逆矩阵,记为
。
矩阵的转置即将矩阵的行列互换,记为。当
,则有
。
有了这些矩阵的知识,对接下来的学习会很有帮助。