【吴恩达机器学习教学视频笔记】

本文回顾了线性代数中的基本概念,包括矩阵的加法、标量乘法和向量乘法,重点讲解了矩阵乘法的规则和性质。通过实例展示了矩阵乘法在预测分析中的应用,如如何利用矩阵运算简化多个假设函数对房价的预测。还介绍了矩阵的转置和逆,强调了单位矩阵的重要性。这些基础知识对于后续的数学建模和数据分析至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第三章 线性代数知识回顾 (Linear Algebra review)

第一、二、三节

主要回顾了矩阵的元素和向量的定义,以及矩阵加法、矩阵标量乘法和 矩阵向量乘法。

第四节 矩阵乘法

主要回顾了矩阵与矩阵相乘的规则和计算方法。A\times B=C

并通过下图的例子阐述了矩阵乘法的用处,通过一次矩阵乘法可以进行大量运算。

 如上图所示,已经知道四个房子的大小,并得到了三个不同的假设函数,现在需要预测房屋的价格,如果同时使用三个假设函数进行房价预测,采用矩阵乘法就会变得更加方便。左侧的矩阵代表不同房子的面积,中间的矩阵代表不同的假设函数,右侧的矩阵每一行代表着不同假设函数预测的房价。

第五节  矩阵乘法的性质

矩阵乘法不满足交换律但满足结合律,同时也介绍了单位矩阵I。

A\times B\neq B\times A

A\times \left ( B\times C \right ) = \left ( A\times B \right )\times C

A\times I=I\times A=A

第六节  矩阵的转置和逆

如果一个矩阵A,它是方阵,且满足AB=I,则矩阵B就是矩阵A的逆矩阵,记为A^{-1}=B

矩阵的转置即将矩阵的行列互换,记为A^{T}。当B=A^{T},则有A_{ij}=B_{ji}

有了这些矩阵的知识,对接下来的学习会很有帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值