【转载】神经网络的基础——Logistic回归中的反向传播算法及其推导

本文深入解析Logistic回归的正向传播、梯度下降及反向传播原理,提供Python实现代码,帮助读者理解并掌握Logistic回归算法的核心概念。

最近发现有个超详细的关于Logistic中正向传播、梯度下降、反向传播的推导公式及其代码博文,贡献给大家,希望大家喜欢!

附上其代码:

import numpy as np
def gradient_descent(alpha=0.01,iters=1000):
	for _ in range(iters):
		Z = np.dot(W.T,X) + b
		A = 1 / (1 + np.exp(-Z))
		dZ = A - Y
		dw = 1 / m * np.dot(X, dZ.T)
		db = 1 / m * np.sum(dZ)
		dw -= alpha * dw
		db -= alpha * db
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值