台湾大学林轩田《机器学习基石》学习笔记第14讲——Regularization

本文详细讲解了Regularization(规则化)技术,用于解决机器学习中的过拟合问题。通过限制目标函数的优化问题,如采用L1和L2正则化,可以避免过拟合。规则化有助于降低模型复杂度,提高泛化能力,并与VC维理论相关联。λ的选择至关重要,影响模型的拟合程度和泛化误差。
摘要由CSDN通过智能技术生成

上节课我们介绍了过拟合发生的原因:excessive power, stochastic/deterministic noise 和limited data。并介绍了解决overfitting的简单方法。本节课,我们将介绍解决overfitting的另一种非常重要的方法:Regularization规则化。

In general, regularization is a technique that applies to objective functions in ill-posed optimization problems.
The mathematical term well-posed problem stems from a definition given by Jacques Hadamard. He believed that mathematical models of physical phenomena should have the properties that:
1.a solution exists,
2.the solution is unique,
3.the solution’s behavior changes continuously with the initial conditions.
Problems that are not well-posed in the sense of Hadamard are termed ill-posed problems.
——from Wikipedia

一、Regularized Hypothesis Set
在这里插入图片描述

  • 如右图所示,在数据量不够大的情况下,如果我们使用一个高阶多项式(图中红色曲线所示),例如10阶,对目标函数(蓝色曲线)进行拟合。拟合曲线波动很大,虽然Ein很小,但是Eout很大,也就造成了overfitting.
  • 那么如何对过拟合现象进行修正,使hypothesis更接近于target function呢?一种方法就是左图的regularized fit。
  • 注意到左图的红色曲线比右图的红色曲线要更平滑,因为使用了更低阶的多项式,例如2阶;那么如何把10阶的hypothesis set转化成2阶呢?
    在这里插入图片描述
    在这里插入图片描述
  • 我们注意到不同阶数的hypothesis set是有包含关系的,如果我们在 H 10 H_{10} H10的w向量做一些限制条件,例如规定 w 3 = w 4 = . . . = w 10 = 0 w_3=w_4=...=w_{10}=0 w3=w4=...=w10=0,那么 H 10 H_{10} H10就转化成了 H 2 H_2 H2了,我们把这种操作叫做constraint;
  • 但为什么不直接使用 H 2 H_2 H2的hypothesis呢?
    在这里插入图片描述
  • 上图对刚才的限制条件做了一些宽松化:即不再要求固定的 w q = 0 w_q=0 wq=0了,而是只要求w向量中的其中至少8个元素要等于0,从而得到一个新的hypothesis set H 2 ′ H_2 ' H2,我们称这种操作为Looser constraint.
  • 这样有两个好处:一方面 H 2 ′ H_2 ' H2要比 H 2 H_2 H2更灵活,另一方面 H 2 ′ H_2 '
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值