PyTorch中nn.ReLU(inplace=True)中inplace=True有什么用

以下转自:PyTorch中nn.ReLU(inplace=True)中inplace=True有什么用_zghnwsc的博客-CSDN博客 

nn.ReLU(inplace=True),

pytorch里面,inplace默认是False的,这里我们设置成True,
它的意思是:是否将计算得到的值直接覆盖之前的值。

就是对上面conv2d中传过来的tensor直接修改,而不是先找一个变量做中间的传递。

这样做的好处就是能够节省运算内存,不用多存储额外的变量。


以下转自:nn.ReLU(inplace=True)中inplace的作用 - 慢行厚积 - 博客园

意思是是否将得到的值计算得到的值覆盖之前的值,比如:

x = x +1

即对原值进行操作,然后将得到的值又直接复制到该值中。

而不是覆盖运算的例子如:

y = x + 1
x = y

这样就需要花费内存去多存储一个变量y。

所以

nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True)

的意思就是对从上层网络Conv2d中传递下来的tensor直接进行修改,这样能够节省运算内存,不用多存储其他变量。


不会对函数的功能产生影响,所以可以设置 inplace=True

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值