Lowest Common Multiple Plus(又名多个数求最小公倍数)

Lowest Common Multiple Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 73046    Accepted Submission(s): 30342


 

Problem Description

求n个数的最小公倍数。

 

 

Input

输入包含多个测试实例,每个测试实例的开始是一个正整数n,然后是n个正整数。

 

 

Output

为每组测试数据输出它们的最小公倍数,每个测试实例的输出占一行。你可以假设最后的输出是一个32位的整数。

 

 

Sample Input

 

2 4 6 3 2 5 7

 

 

Sample Output

 

12 70

 

这个题有两种算法,一种是找最大数的倍数,另一种就是辗转相除法

我这里先贴上第一种方法,两个程序

 

/*
#include<stdio.h>
int time(int a,int b)
{
    int i,t;
    if(a>b)
    {
        for(i=1;;i++)
        {
            if(a*i%b==0)
            {
                return (a*i);
                break;
            }
        }    
    }
    else 
    {
        for(i=1;;i++)
        {
            if(b*i%a==0)
            {
                return (b*i);
                break;
            }
        }
    }
}
int main()
{
    int a[1000];
    int t,i,timesum,min1;
    while(scanf("%d",&t)!=EOF)
    {
        for(i=0;i<t;i++)
        scanf("%d",&a[i]);
        timesum=a[0];
        for(i=1;i<t;i++)
        {
        timesum=time(timesum,a[i]);
         }
        printf("%d\n",timesum);
    }    
    return 0;
}

 

 

*/
#include<stdio.h>
int main()
{
    int n,q;
    int a[100];
    while(scanf("%d",&n)!=EOF)
    {
        int i,j,h;
        for(i=0;i<n;i++)
        {
            scanf("%d",&a[i]);
        }
        int max=0,f;
        for(i=0;i<n;i++)
        {
            if(a[i]>=max)
            {
                max=a[i];
                f=i;
            }
        }
         q=0,j;
        for(j=1;;j++)
        {
            q=0;
            for(i=0;i<n;i++)
            {
                if((a[f]*j)%a[i]!=0)
                {
                q=1;
                break;
                }
            }
            if(q==0)
            {
                printf("%d\n",a[f]*j);
                break;
            }
        }

    }
    return 0;
}
辗转相除法,可以学习一下,这个算法很好,求这种问题。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值