题目链接:http://poj.org/problem?id=1696
题意:一张图上给出n个点的坐标(xi,yi),其中xi,yi均为正整数。记这n个点中,拥有最小y的点为A,你开始从点(0, yA)开始走向点A,然后,你可以随意选择径直走去另外的点,但必须满足一下3个条件:
1:只能向左转向。
2:走过的路径为留下一条红色的轨迹。
3:不能越过这条红色的轨迹。
问你最多能到达几个点,并且按到达的顺序输出各个点的标号。
10
1 4 5
2 9 8
3 5 9
4 1 7
5 3 2
6 6 3
7 10 10
8 8 1
9 2 4
10 7 6
每个样例第一行给出点的个数n,下面n行每行点的编号和xy坐标。
参考博客:http://www.cnblogs.com/kuangbin/p/3192286.html
极角排序方法:利用叉积,看向量p1和p2的叉积是否小于零,是则说明p1在p2逆时针方向,即p1的极角比p2的大,极角相同则按离p0距离降序排序。
以pos坐标为基准,每次将后面的点按照到pos的极角由小到大排序,排到最后就是答案了。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <cmath>
using namespace std;
const double eps = 1e-8;
const double PI = acos(-1.0);
int sgn(double x) {
if(fabs(x) < eps)return 0;
if(x < 0)return -1;
else return 1;
}
struct Point {
double x,y;
int index;
Point(){}
Point(double _x,double _y) {
x = _x;y = _y;
}
Point operator -(const Point &b)const {
return Point(x - b.x,y - b.y);
}
double operator ^(const Point &b)const {
return x*b.y - y*b.x;
}
double operator *(const Point &b)const {
return x*b.x + y*b.y;
}
void transXY(double B) {
double tx = x,ty = y;
x = tx*cos(B) - ty*sin(B);
y = tx*sin(B) + ty*cos(B);
}
};
double dist(Point a, Point b) {
return sqrt((a - b) * (a - b));
}
Point p[55];
int pos;
bool cmp(Point a, Point b) {
double tmp = ((a - p[pos]) ^ (b - p[pos]));
if(sgn(tmp) == 0) return dist(a, p[pos]) > dist(b, p[pos]); //极角相同按照距离由小到大排序
else if(sgn(tmp) > 0) return 1; //排序后数组应满足这个条件
else return 0;
}
int main() {
int t;
scanf("%d", &t);
while(t--) {
int n;
scanf("%d", &n);
int i, j;
pos = 0;
for(i = 0; i < n; i++) {
scanf("%d %lf %lf", &p[i].index, &p[i].x, &p[i].y);
if(p[0].y > p[i].y || sgn(p[0].y - p[i].y) == 0 && p[0].x > p[i].x) { //找最左下角的点
swap(p[0], p[i]);
}
}
for(i = 1; i < n; i++) {
sort(p + i, p + n, cmp);
pos++;
}
printf("%d", n);
for(i = 0; i < n; i++) {
printf(" %d", p[i].index);
}
puts("");
}
return 0;
}