目录
CUDA(Compute Unified Device Architecture)是 NVIDIA 提供的并行计算平台和编程模型,它允许开发者利用 GPU 的强大计算能力。在开发深度学习、图像处理等高性能计算应用时,了解当前 CUDA 版本至关重要。本文将介绍几种常见的方法来查看 CUDA 的版本,适用于不同的操作系统。
1. 使用 nvcc
命令
如果你安装了 CUDA 开发工具包,你可以使用 nvcc
命令来查看 CUDA 的版本。打开终端(或命令提示符),运行:
nvcc --version
这将显示 CUDA 编译器驱动程序的版本信息,从中可以找到 CUDA 的版本号。
输出示例:
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Wed_Sep_22_20:09:16_PDT_2023
Cuda compilation tools, release 11.8, V11.8.0
在输出中,release
后面的数字即为当前 CUDA 的版本号。
2. 使用 nvidia-smi
命令
nvidia-smi
是一个 NVIDIA 提供的工具,用于监控 GPU 状态。它通常也能显示安装的 CUDA 版本。运行以下命令:
nvidia-smi
在输出的第一个部分中,通常可以找到 CUDA 版本号的信息,例如:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 457.20 Driver Version: 457.20 CUDA Version: 11.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 GeForce GTX 1050 WDDM | 00000000:01:00.0 Off | N/A |
| N/A 43C P8 N/A / N/A | 189MiB / 4096MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
在输出的第一部分中,CUDA Version
字段会显示当前的 CUDA 版本。
3. 查找安装目录中的 version.txt
文件
CUDA 的安装目录通常包含一个 version.txt
文件,里面记录了 CUDA 的版本号。你可以在 CUDA 的安装目录中找到这个文件。默认安装路径如下:
- Linux:
/usr/local/cuda/version.txt
- Windows:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vX.Y\version.txt
。
可以使用以下命令查看该文件内容:
Linux
cat /usr/local/cuda/version.txt
Windows (在命令提示符中)
type "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vX.Y\version.txt"
4. 使用 Python查询 CUDA 版本
如果你在 Python 环境中工作,并且安装了 PyTorch,可以使用 torch
来查询 CUDA 的版本:
import torch
print(torch.version.cuda)
这将输出当前 PyTorch 绑定的 CUDA 版本,便于确认是否与系统中的 CUDA 版本匹配。
总结
了解 CUDA 版本对于确保软件兼容性和优化性能非常重要。以上介绍的几种方法涵盖了从命令行工具到程序代码的多种选择,适用于不同的操作系统和环境。根据你的需求,选择最适合的方法来检查 CUDA 版本,确保你的开发工作顺利进行。