【CUDA】【PyTorch】安装 PyTorch 与 CUDA 11.1 的详细步骤

在使用深度学习框架时,确保正确配置 CUDA 与 PyTorch 版本是至关重要的。如果你需要在系统上安装与 CUDA 11.1 兼容的 PyTorch,下面的指南将帮助你完成这个过程。

亲测可行。


流程图示

Windows
Linux
成功
失败
开始
选择操作系统
下载 CUDA 安装包
使用命令安装 CUDA
安装 CUDA 并设置环境变量
下载 PyTorch 安装命令
执行安装命令
检查安装
运行示例代码
检查问题
结束

CSDN @ 2136

一、前提条件

  1. 系统要求

    • 操作系统:Linux、Windows 或 macOS(macOS 可能需要额外的配置)
    • CUDA 驱动程序和工具包版本:CUDA 11.1
  2. 安装 CUDA 11.1

  3. 安装 NVIDIA 驱动程序

    • 确保安装了兼容 CUDA 11.1 的 NVIDIA 驱动程序。

二、检查 CUDA 安装

确认 CUDA 11.1 安装是否成功。运行以下命令来检查 CUDA 版本:

nvcc --version

你应该看到类似以下的输出,其中包含 CUDA 11.1 的版本信息:

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Sun_Oct_25_20:10:16_PDT_2020
Cuda compilation tools, release 11.1, V11.1.74

三、安装 PyTorch

要安装与 CUDA 11.1 兼容的 PyTorch 版本,你可以使用 PyTorch 的官方安装指南来确保兼容性。以下是详细步骤:

  1. 选择安装方式

    • 使用 Conda(推荐):简单且自动处理依赖关系。
    • 使用 pip:如果你喜欢使用 pip,也可以通过 pip 安装 PyTorch。
  2. 使用 Conda 安装 PyTorch

    如果你使用 Conda,你可以使用以下命令来安装 PyTorch 与 CUDA 11.1:

    conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch
    
    • pytorch:PyTorch 框架
    • torchvision:图像处理工具
    • torchaudio:音频处理工具
    • cudatoolkit=11.1:指定 CUDA 版本
    • -c pytorch:使用 PyTorch 官方 Conda 频道
  3. 使用 pip 安装 PyTorch

    如果你使用 pip,可以通过以下命令安装 PyTorch 与 CUDA 11.1 兼容的版本:

pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu111

推荐使用以下命令

为了提高兼容性,建议使用指定版本的安装命令:

pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0+cu111 -f https://download.pytorch.org/whl/cu111/torch_stable.html

这里的 torch==1.8.0+cu111 指定了与 CUDA 11.1 兼容的 PyTorch 版本。如果有新的 PyTorch 版本发布,你可以在 PyTorch 官方网站 上找到最新的安装命令。

四、验证安装

安装完成后,你可以使用以下 Python 脚本来验证 PyTorch 是否正确安装并且 CUDA 支持正常:

import torch

print(f"PyTorch Version: {torch.__version__}")
print(f"CUDA Version: {torch.version.cuda}")
print(f"Is CUDA Available: {torch.cuda.is_available()}")

if torch.cuda.is_available():
    print(f"Number of GPUs: {torch.cuda.device_count()}")
    for i in range(torch.cuda.device_count()):
        print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
        print(f"  Memory Allocated: {torch.cuda.memory_allocated(i) / (1024 ** 2):.2f} MB")
        print(f"  Memory Cached: {torch.cuda.memory_reserved(i) / (1024 ** 2):.2f} MB")

运行上述脚本后,你应该看到 PyTorch 的版本信息、CUDA 版本,以及 GPU 是否可用的详细信息。

五、常见问题和解决方案

  1. CUDA 版本不匹配

    • 确保安装的 PyTorch 版本与系统上的 CUDA 版本一致。如果不一致,请检查 PyTorch 官网以获取正确的安装命令。
  2. CUDA 驱动程序问题

    • 确保安装了正确的 NVIDIA 驱动程序,驱动程序版本应支持 CUDA 11.1。
  3. 环境变量设置

    • 确保 CUDA 路径(通常是 /usr/local/cudaC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1)已正确设置在环境变量中。

总结

通过上述步骤,你可以成功安装与 CUDA 11.1 兼容的 PyTorch 版本,并验证其在你的系统上的正确性。如果在安装过程中遇到问题,可以参考 PyTorch 官方文档或相关社区的帮助资源。


评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丶2136

谢谢老板。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值