图像采样与量化:数字图像处理的基础

122 篇文章 36 订阅 ¥59.90 ¥99.00
本文详细介绍了图像采样与量化的概念,作为数字图像处理的基础,采样将连续图像转换为离散像素,常见方法包括最近邻、双线性等插值。量化则限制像素值范围,常用均匀量化。通过这两步,图像得以转化为数字形式,便于后续处理和分析。
摘要由CSDN通过智能技术生成

图像采样与量化是数字图像处理中的关键概念,它们负责将连续的图像数据转换为离散的数字形式,为后续处理步骤提供基础。本文将介绍图像采样与量化的概念,并提供相应的源代码示例。

  1. 图像采样
    图像采样是将连续的图像信号转换为离散的图像像素的过程。在数字图像中,图像被分割为一个个像素点,每个像素点包含了图像中的一小部分信息。采样过程决定了离散图像中的像素点位置以及像素点之间的间隔。

常见的图像采样方法有最近邻插值、双线性插值和双立方插值。下面以最近邻插值为例,展示如何对图像进行采样。

import numpy as np
import cv2

def nearest_neighbor_interpolation(image, scale_factor):
    height
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值