PyTorch中nn.Parameter使用详解

122 篇文章 36 订阅 ¥59.90 ¥99.00
本文详细介绍了PyTorch中的nn.Parameter类,它是创建可学习参数的关键,属于Tensor的子类。通过nn.Parameter,可以定义并训练模型参数。文中通过实例展示了如何在模型的forward方法中使用参数,以及在训练过程中如何更新这些参数。
摘要由CSDN通过智能技术生成

在PyTorch中,nn.Parameter是一个重要的类,它用于定义可学习的参数。本文将详细介绍nn.Parameter的使用方法,并提供相应的源代码示例。

在开始之前,我们需要先导入PyTorch库:

import torch
import torch.nn as nn

nn.Parameter类是torch.nn模块中的一个类,用于创建可学习的参数。它是Tensor的一个子类,可以被自动注册为模型的可训练参数。

下面是一个简单的示例,演示如何使用nn.Parameter创建一个可训练的参数:

class MyModel(nn.Module)
pytorch 是一个高效的深度学习框架,其nn.modulelist 和 nn.sequential是常用的模块。这两种模块都可以用于创建深度学习网络,并且能够实现自动求导。nn.sequential 是一个有序的容器,其每个模块按照传入的顺序依次进行计算。nn.modulelist 是一个无序的容器,其每个模块都可以以列表的形式存储,且没有特定的计算顺序。 nn.sequential 模块的优点是简单易用,并且可以通过一行代码构建和训练网络。例如,要创建一个简单的两层全连接神经网络,可以如下代码实现: ``` model = nn.Sequential(nn.Linear(784, 64), nn.ReLU(), nn.Linear(64, 10), nn.Softmax(dim=1)) ``` 这会定义一个两个全连接层网络以及 ReLU 和softmax 激活函数,输入大小为 784(MNIST 图像大小) ,输出大小为 10(10 个数字)。 nn.modulelist 是一个更加灵活的容器,可以在其添加任意的子模块。要使用 nn.modulelist,需要先创建一个空的 nn.modulelist,然后手动向其添加子模块。例如,可以这样创建一个相同的两层全连接网络: ``` model = nn.ModuleList([ nn.Linear(784, 64), nn.ReLU(), nn.Linear(64, 10), nn.Softmax(dim=1) ]) ``` 需要注意的是,nn.modulelist 的子模块顺序可能会影响计算结果,因为没有特定的训练顺序。因此,在使用 nn.modulelist 时应该尽量保证顺序的准确性。 综上所述,nn.sequential 和 nn.modulelist 都是常用的容器,用于组织神经网络的子模块,它们在不同场景下具有各自的优势。在简单的前向计算nn.sequential 更加容易使用;在需要更好的灵活性时,nn.modulelist 可以更好地实现目标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值