CNN模型搭建

def train_model(train_x, train_y, test_x, test_y, val_x, val_y):

    model = Sequential()
    # 第一个卷积层,32个卷积核,大小5x5,卷积模式SAME,激活函数relu,输入张量的大小
    model.add(Conv2D(filters= 32, kernel_size=(5,5), padding='Same', activation='relu',input_shape=(224, 224, 3))) #图片大小224*224,通道数为3
    model.add(Conv2D(filters= 32, kernel_size=(5,5), padding='Same', activation='relu'))
    # 池化层,池化核大小2x2
    model.add(MaxPool2D(pool_size=(2,2)))
    # 随机丢弃四分之一的网络连接,防止过拟合
    model.add(Dropout(0.25))
    model.add(Conv2D(filters= 64, kernel_size=(3,3), padding='Same', activation='relu'))
    model.add(Conv2D(filters= 64, kernel_size=(3,3), padding='Same', activation='relu'))
    model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
    model.add(Dropout(0.25))
    # 全连接层,展开操作,
    model.add(Flatten())
    # 添加隐藏层神经元的数量和激活函数
    model.add(Dense(256, activation='relu'))
    model.add(Dropout(0.25))
    # 输出层
    model.add(Dense(2, activation='sigmoid'))

    # 设置优化器
    # lr :学习效率, decay :lr的衰减值
    optimizer = adam(lr = 0.001, decay=0.0)

    # 编译模型
    # loss:损失函数,metrics:对应性能评估函数
    model.compile(optimizer=optimizer, loss = 'categorical_crossentropy', metrics=['accuracy'])

    model.fit(train_x, train_y, batch_size=10 ,epochs= 15, validation_data = (val_x, val_y), verbose =1)

 

 

### 回答1: Python中的Scikit-Learn库提供了一个快速而灵活的框架,可以轻松地构建卷积神经网络CNN模型。要搭建一个CNN模型,我们需要遵循以下步骤: 1.准备数据:首先,我们需要加载和处理数据集。当前常用的是数据框架格式,可用Pandas处理,但如果需要使用TensorFlow中的Keras,那么就需要使用它的内置数据加载和预处理功能,来获得更高的效率。 2.构建模型结构:在此步骤中,我们可以选择使用Keras,定义CNN模型。在论文中,也可以引用LeNet或AlexNet这样的循环卷积网络结构。 3.编译模型:在此步骤中,我们需要定义损失函数、优化器和评估指标,以便用于训练模型。 4.训练模型:在此步骤中,我们将数据集喂给模型,通过调整参数来最小化损失函数进行迭代训练。 5.评估模型:完成训练后,我们需要评估模型的性能,看看它在新数据上的表现情况。可以采用交叉验证和测试集等方法评估模型。 6.预测数据:最后,我们可以使用训练好的模型来进行预测,在新数据集上进行推断。 在构建CNN模型时,需要特别注意调整超参数和模型架构,以便获得最佳性能。同时,也要注意过拟合和欠拟合问题,并采取相应的解决方案。 ### 回答2: Python中的sklearn库提供了许多机器学习算法的实现,包括卷积神经网络CNN)。搭建CNN模型的基本步骤如下: 1.导入sklearn库中神经网络模块: ``` from sklearn.neural_network import MLPClassifier ``` 2.准备数据: CNN是一种非常适合处理图像的神经网络,因此在搭建CNN模型之前,需要准确地处理图像数据。可以使用numpy加载图片并将其转换为多维数组。通常可以使用OpenCV或Pillow等库来加载图片数据集。 3.定义模型: 使用MLPClassifier类来定义模型。MLPClassifier是多层神经网络的分类器。在此类中,包含许多参数,例如隐层层数、每层神经元数和激活函数等。 4.训练和测试模型: 定义好模型后,使用fit()方法对模型进行训练,使用predict()方法对模型进行测试。在训练和测试时,需要传递样本和标签数据。通常会将数据分成训练集和测试集。 5.评估模型: 完成模型训练和测试后,可以使用sklearn库中的准确率(accuracy)函数,对模型进行评估。 总之,使用sklearn库中的MLPClassifier类创建CNN模型,并将数据集用于训练和测试,最后通过准确率函数对模型进行评估。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小码爱撞墙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值