理解GloVe模型(+总结)

概述

  • 模型目标:进行词的向量化表示,使得向量之间尽可能多地蕴含语义和语法的信息
  • 输入:语料库
  • 输出:词向量
  • 方法概述:首先基于语料库构建词的共现矩阵,然后基于共现矩阵和GloVe模型学习词向量。*开始 -> 统计共现矩阵 -> 训练词向量 -> 结束

统计共现矩阵

设共现矩阵为X,其元素为Xi,j
Xi,j的意义为:在整个语料库中,单词i和单词j共同出现在一个窗口中的次数。
举个栗子:
设有语料库:

i love you but you love him i am sad
这个小小的语料库只有1个句子,涉及到7个单词:i、love、you、but、him、am、sad。
如果我们采用一个窗口宽度为5(左右长度都为2)的统计窗口,那么就有以下窗口内容:

窗口标号中心词窗口内容
0ii love you
1lovei love you but
2youi love you but you
3butlove you but you love
4youyou but you love him
5lovebut you love him i
6himyou love him i am
7ilove him i am sad
8amhim i am sad
9sadi am sad

窗口0、1长度小于5是因为中心词左侧内容少于2个,同理窗口8、9长度也小于5。
以窗口5为例说明如何构造共现矩阵:
中心词为love,语境词为but、you、him、i;则执行:

X_{love,but}+=1
X_{love,you}+=1
X_{love,him}+=1
X_{love,i}+=1

使用窗口将整个语料库遍历一遍,即可得到共现矩阵X。

使用GloVe模型训练词向量

模型公式

先看模型,代价函数长这个样子:

J = ∑ i , j N f ( X i , j ) ( v i T v j + b i + b j − l o g ( X i , j ) ) 2 J=∑_{i,j}^Nf(X_{i,j})(v^T_iv_j+b_i+b_j−log(X_{i,j}))^2 J=i,jNf(Xi,j)(viTvj+bi+bjlog(Xi,j))2
v i v_i vi v j v_j vj是单词i和单词j的词向量, b i b_i bi b j b_j bj是两个标量(作者定义的偏差项),f是权重函数(具体函数公式及功能下一节介绍),N是词汇表的大小(共现矩阵维度为N*N)。
可以看到,GloVe模型没有使用神经网络的方法。

模型怎么来的

那么作者为什么这么构造模型呢?首先定义几个符号:

X i = ∑ j = 1 N X i , j X_i=∑_{j=1}^NX_{i,j} Xi=j=1NXi,j
其实就是矩阵单词i那一行的和;
P i , k = X i , k X i P_{i,k}=X_{i,k}X_i Pi,k=Xi,kXi
条件概率,表示单词k出现在单词i语境中的概率;
r a t i o i , j , k = P i , k P j , k ratio_{i,j,k}=P_{i,k}P_{j,k} ratioi,j,k=Pi,kPj,k
两个条件概率的比率。
作者的灵感是这样的:
作者发现,ratio_{i,j,k}这个指标是有规律的,规律统计在下表:

ratioi,j,k的值单词j,k相关单词j,k不相关
单词i,k相关趋近1很大
单词i,k不相关很小趋近1

很简单的规律,但是有用。
思想:假设我们已经得到了词向量,如果我们用词向量 v i v_{i} vi v j v_{j} vj v k v_{k} vk通过某种函数计算 r a t i o i , j , k ratio_{i,j,k} ratioi,j,k,能够同样得到这样的规律的话,就意味着我们词向量与共现矩阵具有很好的一致性,也就说明我们的词向量中蕴含了共现矩阵中所蕴含的信息。
设用词向量 v i v_{i} vi v j v_{j} vj v k v_{k} vk计算 r a t i o i , j , k ratio_{i,j,k} ratioi,j,k的函数为g(vi,vj,vk)(我们先不去管具体的函数形式),那么应该有:
P i , k P j , k = r a t i o i , j , k = g ( v i , v j , v k ) P_{i,k}P_{j,k}=ratio_{i,j,k}=g(v_i,v_j,v_k) Pi,kPj,k=ratioi,j,k=g(vi,vj,vk)
即:
P i , k P j , k = g ( v i , v j , v k ) P_{i,k}P_{j,k}=g(v_i,v_j,v_k) Pi,kPj,k=g(vi,vj,vk)
即二者应该尽可能地接近;
很容易想到用二者的差方来作为代价函数:
J = ∑ i , j , k N ( P i , k P j , k − g ( v i , v j , v k ) ) 2 J=∑_{i,j,k}^N(\frac{P_{i,k}}{P_{j,k}}−g(v_i,v_j,v_k))^2 J=i,j,kN(Pj,kPi,kg(vi,vj,vk))2
但是仔细一看,模型中包含3个单词,这就意味着要在NNN的复杂度上进行计算,太复杂了,最好能再简单点。
现在我们来仔细思考g(vi,vj,vk),或许它能帮上忙;
作者的脑洞是这样的:

  1. 要考虑单词i和单词j之间的关系,那g(vi,vj,vk)中大概要有这么一项吧:vi−vj;嗯,合理,在线性空间中考察两个向量的相似性,不失线性地考察,那么vi−vj大概是个合理的选择;
    2. r a t i o i , j , k ratio_{i,j,k} ratioi,j,k是个标量,那么g(vi,vj,vk)最后应该是个标量啊,虽然其输入都是向量,那內积应该是合理的选择,于是应该有这么一项吧: ( v i − v j ) T v k (vi−vj)^Tv_k (vivj)Tvk
  2. 然后作者又往 ( v i − v j ) T v k (vi−vj)^Tv_k (vivj)Tvk的外面套了一层指数运算exp(),得到最终的g(vi,vj,vk)=exp( ( v i − v j ) T v k (vi−vj)^Tv_k (vivj)Tvk);
    最关键的第3步,为什么套了一层exp()?
    套上之后,我们的目标是让以下公式尽可能地成立:
    P i , k P j , k = g ( v i , v j , v k ) P_{i,k}P_{j,k}=g(v_i,v_j,v_k) Pi,kPj,k=g(vi,vj,vk)
    即:
    P i , k P j , k = e x p ( ( v i − v j ) T v k ) P_{i,k}P_{j,k}=exp((v_i−v_j)^Tv_k) Pi,kPj,k=exp((vivj)Tvk)
    即:
    P i , k P j , k = e x p ( v i T v k − v j T v k ) P_{i,k}P_{j,k}=exp(v^T_iv_k−v^T_jv_k) Pi,kPj,k=exp(viTvkvjTvk)
    即:
    P i , k P j , k = e x p ( v i T v k ) e x p ( v j T v k ) P_{i,k}P_{j,k}=exp(v^T_iv_k)exp(v^T_jv_k) Pi,kPj,k=exp(viTvk)exp(vjTvk)
    然后就发现找到简化方法了:只需要让上式分子对应相等,分母对应相等,即:
    P i , k = e x p ( v i T v k ) P_{i,k}=exp(v^T_iv_k) Pi,k=exp(viTvk)并且 P j , k = e x p ( v j T v k ) P_{j,k}=exp(v^T_jv_k) Pj,k=exp(vjTvk)
    然而分子分母形式相同,就可以把两者统一考虑了,即:
    P i , j = e x p ( v i T v j ) P_{i,j}=exp(v^T_iv_j) Pi,j=exp(viTvj)
    本来我们追求:
    P i , k P j , k = g ( v i , v j , v k ) P_{i,k}P_{j,k}=g(v_i,v_j,v_k) Pi,kPj,k=g(vi,vj,vk)
    现在只需要追求:
    P i , j = e x p ( v i T v j ) P_{i,j}=exp(v^T_iv_j) Pi,j=exp(viTvj)
    两边取个对数:
    l o g ( P i , j ) = v i T v j log(P_{i,j})=v^T_iv_j log(Pi,j)=viTvj
    那么代价函数就可以简化为:
    J = ∑ i , j N ( l o g ( P i , j ) − v i T v j ) 2 J=∑_{i,j}^N(log(P_{i,j})−v^T_iv_j)^2 J=i,jN(log(Pi,j)viTvj)2
    现在只需要在NN的复杂度上进行计算,而不是NN*N,现在关于为什么第3步中,外面套一层exp()就清楚了,正是因为套了一层exp(),才使得差形式变成商形式,进而等式两边分子分母对应相等,进而简化模型。
    然而,出了点问题。
    仔细看这两个式子:
    l o g ( P i , j ) = v i T v j log(P_{i,j})=v^T_iv_j log(Pi,j)=viTvj l o g ( P j , i ) = v j T v i log(P_{j,i})=v^T_jv_i log(Pj,i)=vjTvi
    l o g ( P i , j ) log(P_{i,j}) log(Pi,j)不等于 l o g ( P j , i ) log(P_{j,i}) log(Pj,i)但是 v i T v j v^T_iv_j viTvj等于 v j T v i v^T_jv_i vjTvi;即等式左侧不具有对称性,但是右侧具有对称性。
    数学上出了问题。
    补救一下好了。
    现将代价函数中的条件概率展开:
    l o g ( P i , j ) = v i T v j log(P_{i,j})=v^T_iv_j log(Pi,j)=viTvj
    即为:
    l o g ( X i , j ) − l o g ( X i ) = v i T v j log(X_{i,j})−log(X_i)=v^T_iv_j log(Xi,j)log(Xi)=viTvj
    将其变为:
    l o g ( X i , j ) = v i T v j + b i + b j log(X_{i,j})=v^T_iv_j+b_i+b_j log(Xi,j)=viTvj+bi+bj
    即添了一个偏差项bj,并将log(Xi)吸收到偏差项bi中。
    于是代价函数就变成了:
    J = ∑ i , j N ( v i T v j + b i + b j − l o g ( X i , j ) ) 2 J=∑_{i,j}^N(v^T_iv_j+b_i+b_j−log(X_{i,j}))^2 J=i,jN(viTvj+bi+bjlog(Xi,j))2
    然后基于出现频率越高的词对儿权重应该越大的原则,在代价函数中添加权重项,于是代价函数进一步完善:
    J = ∑ i , j N f ( X i , j ) ( v i T v j + b i + b j − l o g ( X i , j ) ) 2 J=∑_{i,j}^Nf(X_{i,j})(v^T_iv_j+b_i+b_j-log(X_{i,j}))^2 J=i,jNf(Xi,j)(viTvj+bi+bjlog(Xi,j))2
    具体权重函数应该是怎么样的呢?
    首先应该是非减的,其次当词频过高时,权重不应过分增大,作者通过实验确定权重函数为:
    f ( x ) = { ( x / x m a x ) 0.75 , if  x &lt; x m a x 1 , if  x &gt; = x m a x f(x)=\begin{cases} (x/xmax)^{0.75}, &amp; \text {if $x&lt;xmax$} \\ 1, &amp; \text {if $x&gt;=xmax$} \end{cases} f(x)={(x/xmax)0.75,1,if x<xmaxif x>=xmax
    到此,整个模型就介绍完了。

Glove和skip-gram、CBOW模型对比

Cbow/Skip-Gram 是一个local context window的方法,比如使用NS来训练,缺乏了整体的词和词的关系,负样本采用sample的方式会缺失词的关系信息。
另外,直接训练Skip-Gram类型的算法,很容易使得高曝光词汇得到过多的权重

Global Vector融合了矩阵分解Latent Semantic Analysis (LSA)的全局统计信息和local context window优势。融入全局的先验统计信息,可以加快模型的训练速度,又可以控制词的相对权重。

我的理解是skip-gram、CBOW每次都是用一个窗口中的信息更新出词向量,但是Glove则是用了全局的信息(共现矩阵),也就是多个窗口进行更新

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值