概述
- 模型目标:进行词的向量化表示,使得向量之间尽可能多地蕴含语义和语法的信息
- 输入:语料库
- 输出:词向量
- 方法概述:首先基于语料库构建词的共现矩阵,然后基于共现矩阵和GloVe模型学习词向量。*开始 -> 统计共现矩阵 -> 训练词向量 -> 结束
统计共现矩阵
设共现矩阵为X,其元素为Xi,j。
Xi,j的意义为:在整个语料库中,单词i和单词j共同出现在一个窗口中的次数。
举个栗子:
设有语料库:
i love you but you love him i am sad
这个小小的语料库只有1个句子,涉及到7个单词:i、love、you、but、him、am、sad。
如果我们采用一个窗口宽度为5(左右长度都为2)的统计窗口,那么就有以下窗口内容:
窗口标号 | 中心词 | 窗口内容 |
---|---|---|
0 | i | i love you |
1 | love | i love you but |
2 | you | i love you but you |
3 | but | love you but you love |
4 | you | you but you love him |
5 | love | but you love him i |
6 | him | you love him i am |
7 | i | love him i am sad |
8 | am | him i am sad |
9 | sad | i am sad |
窗口0、1长度小于5是因为中心词左侧内容少于2个,同理窗口8、9长度也小于5。
以窗口5为例说明如何构造共现矩阵:
中心词为love,语境词为but、you、him、i;则执行:
使用窗口将整个语料库遍历一遍,即可得到共现矩阵X。
使用GloVe模型训练词向量
模型公式
先看模型,代价函数长这个样子:
J
=
∑
i
,
j
N
f
(
X
i
,
j
)
(
v
i
T
v
j
+
b
i
+
b
j
−
l
o
g
(
X
i
,
j
)
)
2
J=∑_{i,j}^Nf(X_{i,j})(v^T_iv_j+b_i+b_j−log(X_{i,j}))^2
J=i,j∑Nf(Xi,j)(viTvj+bi+bj−log(Xi,j))2
v
i
v_i
vi,
v
j
v_j
vj是单词i和单词j的词向量,
b
i
b_i
bi,
b
j
b_j
bj是两个标量(作者定义的偏差项),f是权重函数(具体函数公式及功能下一节介绍),N是词汇表的大小(共现矩阵维度为N*N)。
可以看到,GloVe模型没有使用神经网络的方法。
模型怎么来的
那么作者为什么这么构造模型呢?首先定义几个符号:
X
i
=
∑
j
=
1
N
X
i
,
j
X_i=∑_{j=1}^NX_{i,j}
Xi=j=1∑NXi,j
其实就是矩阵单词i那一行的和;
P
i
,
k
=
X
i
,
k
X
i
P_{i,k}=X_{i,k}X_i
Pi,k=Xi,kXi
条件概率,表示单词k出现在单词i语境中的概率;
r
a
t
i
o
i
,
j
,
k
=
P
i
,
k
P
j
,
k
ratio_{i,j,k}=P_{i,k}P_{j,k}
ratioi,j,k=Pi,kPj,k
两个条件概率的比率。
作者的灵感是这样的:
作者发现,ratio_{i,j,k}这个指标是有规律的,规律统计在下表:
ratioi,j,k的值 | 单词j,k相关 | 单词j,k不相关 |
---|---|---|
单词i,k相关 | 趋近1 | 很大 |
单词i,k不相关 | 很小 | 趋近1 |
很简单的规律,但是有用。
思想:假设我们已经得到了词向量,如果我们用词向量
v
i
v_{i}
vi、
v
j
v_{j}
vj、
v
k
v_{k}
vk通过某种函数计算
r
a
t
i
o
i
,
j
,
k
ratio_{i,j,k}
ratioi,j,k,能够同样得到这样的规律的话,就意味着我们词向量与共现矩阵具有很好的一致性,也就说明我们的词向量中蕴含了共现矩阵中所蕴含的信息。
设用词向量
v
i
v_{i}
vi、
v
j
v_{j}
vj、
v
k
v_{k}
vk计算
r
a
t
i
o
i
,
j
,
k
ratio_{i,j,k}
ratioi,j,k的函数为g(vi,vj,vk)(我们先不去管具体的函数形式),那么应该有:
P
i
,
k
P
j
,
k
=
r
a
t
i
o
i
,
j
,
k
=
g
(
v
i
,
v
j
,
v
k
)
P_{i,k}P_{j,k}=ratio_{i,j,k}=g(v_i,v_j,v_k)
Pi,kPj,k=ratioi,j,k=g(vi,vj,vk)
即:
P
i
,
k
P
j
,
k
=
g
(
v
i
,
v
j
,
v
k
)
P_{i,k}P_{j,k}=g(v_i,v_j,v_k)
Pi,kPj,k=g(vi,vj,vk)
即二者应该尽可能地接近;
很容易想到用二者的差方来作为代价函数:
J
=
∑
i
,
j
,
k
N
(
P
i
,
k
P
j
,
k
−
g
(
v
i
,
v
j
,
v
k
)
)
2
J=∑_{i,j,k}^N(\frac{P_{i,k}}{P_{j,k}}−g(v_i,v_j,v_k))^2
J=i,j,k∑N(Pj,kPi,k−g(vi,vj,vk))2
但是仔细一看,模型中包含3个单词,这就意味着要在NNN的复杂度上进行计算,太复杂了,最好能再简单点。
现在我们来仔细思考g(vi,vj,vk),或许它能帮上忙;
作者的脑洞是这样的:
- 要考虑单词i和单词j之间的关系,那g(vi,vj,vk)中大概要有这么一项吧:vi−vj;嗯,合理,在线性空间中考察两个向量的相似性,不失线性地考察,那么vi−vj大概是个合理的选择;
2. r a t i o i , j , k ratio_{i,j,k} ratioi,j,k是个标量,那么g(vi,vj,vk)最后应该是个标量啊,虽然其输入都是向量,那內积应该是合理的选择,于是应该有这么一项吧: ( v i − v j ) T v k (vi−vj)^Tv_k (vi−vj)Tvk。 - 然后作者又往
(
v
i
−
v
j
)
T
v
k
(vi−vj)^Tv_k
(vi−vj)Tvk的外面套了一层指数运算exp(),得到最终的g(vi,vj,vk)=exp(
(
v
i
−
v
j
)
T
v
k
(vi−vj)^Tv_k
(vi−vj)Tvk);
最关键的第3步,为什么套了一层exp()?
套上之后,我们的目标是让以下公式尽可能地成立:
P i , k P j , k = g ( v i , v j , v k ) P_{i,k}P_{j,k}=g(v_i,v_j,v_k) Pi,kPj,k=g(vi,vj,vk)
即:
P i , k P j , k = e x p ( ( v i − v j ) T v k ) P_{i,k}P_{j,k}=exp((v_i−v_j)^Tv_k) Pi,kPj,k=exp((vi−vj)Tvk)
即:
P i , k P j , k = e x p ( v i T v k − v j T v k ) P_{i,k}P_{j,k}=exp(v^T_iv_k−v^T_jv_k) Pi,kPj,k=exp(viTvk−vjTvk)
即:
P i , k P j , k = e x p ( v i T v k ) e x p ( v j T v k ) P_{i,k}P_{j,k}=exp(v^T_iv_k)exp(v^T_jv_k) Pi,kPj,k=exp(viTvk)exp(vjTvk)
然后就发现找到简化方法了:只需要让上式分子对应相等,分母对应相等,即:
P i , k = e x p ( v i T v k ) P_{i,k}=exp(v^T_iv_k) Pi,k=exp(viTvk)并且 P j , k = e x p ( v j T v k ) P_{j,k}=exp(v^T_jv_k) Pj,k=exp(vjTvk)
然而分子分母形式相同,就可以把两者统一考虑了,即:
P i , j = e x p ( v i T v j ) P_{i,j}=exp(v^T_iv_j) Pi,j=exp(viTvj)
本来我们追求:
P i , k P j , k = g ( v i , v j , v k ) P_{i,k}P_{j,k}=g(v_i,v_j,v_k) Pi,kPj,k=g(vi,vj,vk)
现在只需要追求:
P i , j = e x p ( v i T v j ) P_{i,j}=exp(v^T_iv_j) Pi,j=exp(viTvj)
两边取个对数:
l o g ( P i , j ) = v i T v j log(P_{i,j})=v^T_iv_j log(Pi,j)=viTvj
那么代价函数就可以简化为:
J = ∑ i , j N ( l o g ( P i , j ) − v i T v j ) 2 J=∑_{i,j}^N(log(P_{i,j})−v^T_iv_j)^2 J=i,j∑N(log(Pi,j)−viTvj)2
现在只需要在NN的复杂度上进行计算,而不是NN*N,现在关于为什么第3步中,外面套一层exp()就清楚了,正是因为套了一层exp(),才使得差形式变成商形式,进而等式两边分子分母对应相等,进而简化模型。
然而,出了点问题。
仔细看这两个式子:
l o g ( P i , j ) = v i T v j log(P_{i,j})=v^T_iv_j log(Pi,j)=viTvj和 l o g ( P j , i ) = v j T v i log(P_{j,i})=v^T_jv_i log(Pj,i)=vjTvi
l o g ( P i , j ) log(P_{i,j}) log(Pi,j)不等于 l o g ( P j , i ) log(P_{j,i}) log(Pj,i)但是 v i T v j v^T_iv_j viTvj等于 v j T v i v^T_jv_i vjTvi;即等式左侧不具有对称性,但是右侧具有对称性。
数学上出了问题。
补救一下好了。
现将代价函数中的条件概率展开:
l o g ( P i , j ) = v i T v j log(P_{i,j})=v^T_iv_j log(Pi,j)=viTvj
即为:
l o g ( X i , j ) − l o g ( X i ) = v i T v j log(X_{i,j})−log(X_i)=v^T_iv_j log(Xi,j)−log(Xi)=viTvj
将其变为:
l o g ( X i , j ) = v i T v j + b i + b j log(X_{i,j})=v^T_iv_j+b_i+b_j log(Xi,j)=viTvj+bi+bj
即添了一个偏差项bj,并将log(Xi)吸收到偏差项bi中。
于是代价函数就变成了:
J = ∑ i , j N ( v i T v j + b i + b j − l o g ( X i , j ) ) 2 J=∑_{i,j}^N(v^T_iv_j+b_i+b_j−log(X_{i,j}))^2 J=i,j∑N(viTvj+bi+bj−log(Xi,j))2
然后基于出现频率越高的词对儿权重应该越大的原则,在代价函数中添加权重项,于是代价函数进一步完善:
J = ∑ i , j N f ( X i , j ) ( v i T v j + b i + b j − l o g ( X i , j ) ) 2 J=∑_{i,j}^Nf(X_{i,j})(v^T_iv_j+b_i+b_j-log(X_{i,j}))^2 J=i,j∑Nf(Xi,j)(viTvj+bi+bj−log(Xi,j))2
具体权重函数应该是怎么样的呢?
首先应该是非减的,其次当词频过高时,权重不应过分增大,作者通过实验确定权重函数为:
f ( x ) = { ( x / x m a x ) 0.75 , if x < x m a x 1 , if x > = x m a x f(x)=\begin{cases} (x/xmax)^{0.75}, & \text {if $x<xmax$} \\ 1, & \text {if $x>=xmax$} \end{cases} f(x)={(x/xmax)0.75,1,if x<xmaxif x>=xmax
到此,整个模型就介绍完了。
Glove和skip-gram、CBOW模型对比
Cbow/Skip-Gram 是一个local context window的方法,比如使用NS来训练,缺乏了整体的词和词的关系,负样本采用sample的方式会缺失词的关系信息。
另外,直接训练Skip-Gram类型的算法,很容易使得高曝光词汇得到过多的权重
Global Vector融合了矩阵分解Latent Semantic Analysis (LSA)的全局统计信息和local context window优势。融入全局的先验统计信息,可以加快模型的训练速度,又可以控制词的相对权重。
我的理解是skip-gram、CBOW每次都是用一个窗口中的信息更新出词向量,但是Glove则是用了全局的信息(共现矩阵),也就是多个窗口进行更新