安装Python库scikit-surprise
我的环境:Window10,Python3.5,Anaconda3,Pycharm2018.6.2
scikit-surprise
scikit-surprise(通常简写为surprise)是一个专门用于构建和分析推荐系统的Python库,它专注于推荐系统领域的算法实现,简化了推荐算法的实现和性能评估流程。
scikit-surprise支持多种协同过滤推荐算法,特别适合处理显式反馈评分数据,即用户对物品明确给出的评分数据,这是一种基于用户历史行为数据的推荐方法。
安装:
学推荐系统会用到这个scikit-surprise库,但是安装这个库很累人啊,我被折磨的不要不要的,却好像还还很开心的样子。
在pycharm上直接 pip install scikit-surprise 肯定是不行的,会出现没有这个库,即使有这个库也pip不了。![]()
打开Anaconda-Prompt 输入命令安装(有Anaconda的话)

①
conda install -c conda-forge scikit-surprise

自动将scikit-surprise以及配套的numpy版本下载好!!
但是也会遇到一些小麻烦,基本上是镜像源的原因。实在不行的话,转此文去解决。

效果展示:
要在Pycharm中应用到这个scikit-surprise库
在Files->Settings->Project Interpreter->show
里面展示你所安装的所有库

在Files->Settings->Project Interpreter-> +
里面添加库

进入到添加库后,New environment
是创建新环境,在Existing environment
是选择已有的环境

在Existing environment
已有的环境里选择Anaconda环境,向所有项目提供

回到Files->Settings->Project Interpreter->show
里面在展示你所安装的所有库,就能找到scikit-surprise

在.py文件中import scikit-surprise
①
import scikit-surprise

OK咯!!!能愉快的去学习推荐系统呢。
scikit-surprise库的主要特点和功能:
- 广泛的算法支持:
协同过滤(Collaborative Filtering)算法:包括基于用户的CF(User-BasedCF)、基于物品的CF(Item-Based CF)以及其他变体。 基于矩阵分解的算法:如SVD(Singular ValueDecomposition)、SVD++、NMF(Non-negative Matrix Factorization)等。其他推荐算法:比如贝叶斯个性化排序算法(BaselineOnly、BPMF等)。
- 评估模块:
内置了多种评估指标,如RMSE(Root Mean Squared Error)、MAE(Mean Absolute Error)、Precision@k、Recall@k等,方便比较不同推荐算法的效果。
- 数据处理:
- 提供了便捷的数据集加载机制,支持从文件或内置数据集(如 MovieLens,方便用户快速开始实验和原型设计)中加载数据,并且能够将数据转换成适合算法使用的内部格式。
- 支持数据预处理,例如填充缺失值、归一化评分等。
- 可扩展性:
- 用户可以很容易地添加自己的推荐算法或者修改现有算法的行为。
- 简洁的API设计:
- 采用面向对象的设计模式,使得算法的训练、预测和评估过程非常直观和容易理解,用户可以轻松地切换算法、调整参数,并进行交叉验证。
- 实际应用:
- 适用于电影推荐、音乐推荐、商品推荐等多种场景下的推荐系统开发和研究工作。
scikit-surprise库的基本使用步骤:
- 1.安装:通过 pip 安装 scikit-surprise 库。
- 2.选择算法:从支持的算法中选择一个适合您任务的算法。
- 3.读取数据:将数据加载到 Surprise 的数据结构中。数据通常是一个用户-物品-评分的三元组。
- 4.训练模型:使用选择的算法和数据进行模型训练。
- 5.评估模型:使用交叉验证或其他方法评估模型的性能。
- 6.生成推荐:使用训练好的模型生成推荐。
希望本文对你安装Python的XXX库提供了帮助。
SueMagic wish you a happy coding~
有疑问可联系我。
友情链接参考: