安装CUDA10.1,TensorFlow1.15 后,运行深度学习模型,遇到的各种问题
Could not load dynamic library ‘cudart64_100.dll’; dlerror: cudart64_100.dll
解决方法:
- 使用简便的方法,便是将所有需要的dll文件全部修改名称
cudart64_101 cudart64_100
cublas64_10 cublas64_100
cufft64_10 cufft64_100
curand64_10 curand64_10100
cusolver64_10 cusolver64_100
cusparse64_10 cusparse64_100
# 这样可以直接运行,但是无法使用GPU运算
# 会遇到:Non-OK-status: GpuLaunchKernel(...) status: Internal: invalid device function
# 只能使用CPU运算
import os
os.environ['CUDA_VISIBLE_DEVICES'] =

本文记录了在TensorFlow中遇到的CUDA错误,包括`cudart64_100.dll`加载失败、CUDNN分配失败及资源耗尽问题。解决方案包括安装CUDA10.0,调整环境变量,以及通过增加allow growth设置来解决cudnn handle问题。对于内存不足(OOM),提出了修改batch size和降低图像分辨率等优化策略。
最低0.47元/天 解锁文章
3万+

被折叠的 条评论
为什么被折叠?



