深度学习 | 适配tensorflow2.6的CUDA与cuDNN

本文介绍了如何为TensorFlow 2.6配置CUDA 11.2和cuDNN 8.1,包括更新NVIDIA驱动、安装CUDA和cuDNN,以及验证配置是否成功的过程。
摘要由CSDN通过智能技术生成

前言

近日琐事已了,又想在coursera上继续选修课程,看好了一门帝国理工开设的tensorflow2.0专授课程TensorFlow 2 for Deep Learning Specialization

https://www.coursera.org/specializations/tensorflow2-deeplearning

摘要

针对自己的笔记本显卡,配置如下

  • gpu版本的tensorflow2
  • CUDA
  • cuDNN

tensorflow-gpu

  • 搭建虚拟环境
  • pip install tensorflow-gpu
  • 检查tensorflow版本,提示并未发现CUDA
    • 进入ipython
    • import tensorflow as tf
    • tf.__version__

CUDA & cuDNN

  • 选择针对2.60版本tensorflow的CUDA:https://tensorflow.google.cn/install/source_windows?hl=en#gpu在这里插入图片描述
  • 需要下载
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值