数组中的逆序对:归并排序的另类应用
数组中的逆序对:给定的数组,如果两个数字中前面一个数字大于后面的一个,那么称为一个逆序对,数组中所有满足此关系的逆序对总数就是这个数组的逆序对
此处的实现并不优雅,毕竟copy数组是不需要的,只需要一个局部的就可以
但是如果使用的是一个局部的空间复杂度是logn的辅助数组,会造成代码有一点点难理解
另外,书上的明显是错误的代码,没有运行过,但是从逻辑上来分析,应该会出现重复统计的问题
public class _Q36<T> {
public int InversePairs(int nums[]){
if(nums == null) return 0;
int copy[] = Arrays.copyOf(nums, nums.length);
CommonUtils.PrintArray(copy);
return InversePairsCore(nums, copy, 0, nums.length - 1);
}
private int InversePairsCore(int nums[], int copy[], int indexL, int indexR){
if(nums == null || indexL > indexR) return 0;
if (indexL == indexR) {
//copy[indexL] = nums[indexL];
return 0;
}
int len = (indexR - indexL) / 2;
int leftCount = InversePairsCore(nums, copy, indexL, indexL + len);
int rightCount = InversePairsCore(nums, copy, indexL + len + 1, indexR);
int i = indexL + len;
int j = indexR;
int indexCopy = indexR;
int count = 0;
while(i >= indexL && j >= indexL + len + 1){
if(nums[i] > nums[j]){ // 出现逆序对
copy[indexCopy--] = nums[i--];
count = count + j - len - indexL;
}else{
copy[indexCopy--] = nums[j--];
}
}
while(i >= indexL) copy[indexCopy--] = nums[i--];
while(j >= indexL + len + 1) copy[indexCopy--] = nums[j--];
for(int k=indexL; k<=indexR; k++){
nums[k] = copy[k];
}
CommonUtils.PrintArray(copy);
return leftCount + count + rightCount;
}
}
测试代码:
public class _Q36Test extends TestCase {
_Q36 inversePair = new _Q36();
public void test(){
int array[] = {7, 5, 6, 4};
System.out.println(inversePair.InversePairs(array));
}
}