消防器材移走监测预警系统 YOLOv7

消防器材移走监测预警系统利用智能视频分析技术,消防器材移走监测预警系统对监控画面进行实时监测的消防安全管理系统。该系统通过已经安装的监控摄像头,对监控画面进行自动检测和分析,一旦发现异常事件,立即触发报警,并通知相关人员及时处理。系统能够自动分析监控画面中的异常事件,有效降低误报和漏报现象的发生。

YOLOv7 的策略是使用组卷积来扩展计算块的通道和基数。研究者将对计算层的所有计算块应用相同的组参数和通道乘数。然后,每个计算块计算出的特征图会根据设置的组参数 g 被打乱成 g 个组,再将它们连接在一起。此时,每组特征图的通道数将与原始架构中的通道数相同。最后,该方法添加 g 组特征图来执行 merge cardinality。除了保持原有的 ELAN 设计架构,E-ELAN 还可以引导不同组的计算块学习更多样化的特征。因此,对基于串联的模型,我们不能单独分析不同的扩展因子,而必须一起考虑。该研究提出图 (c),即在对基于级联的模型进行扩展时,只需要对计算块中的深度进行扩展,其余传输层进行相应的宽度扩展。这种复合扩展方法可以保持模型在初始设计时的特性和最佳结构。

新的 E-ELAN 完全没有改变原有架构的梯度传输路径,其中使用组卷积来增加添加特征的基数(cardinality),并以 shuffle 和 merge cardinality 的方式组合不同组的特征。这种操作方式可以增强不同特征图学得的特征,改进参数的使用和计算效率。

无论梯度路径长度和大规模 ELAN 中计算块的堆叠数量如何,它都达到了稳定状态。如果无限堆叠更多的计算块,可能会破坏这种稳定状态,参数利用率会降低。新提出的 E-ELAN 使用 expand、shuffle、merge cardinality 在不破坏原有梯度路径的情况下让网络的学习能力不断增强。

随着科技的发展和进步,人民生活水平逐渐提高,火灾风险和负荷随之升高,传统的靠人工巡检的方式已经不能满足现代化社会的发展。本文将介绍一种基于智能视频分析的消防器材移走监测预警系统,该系统能够实时监测视频画面,当监测到消防通道堵塞、烟雾火焰、消防器材移走等异常事件时,立即触发报警,通知相关人员及时处理,加强消防监督管理力度。通过及时发现和处理异常事件,可以有效防止火灾等事故的发生,保障人们的生命财产安全。

import numpy as np
def convert(size, box):
    """
    将标注的 xml 文件生成的【左上角x,左上角y,右下角x,右下角y】标注转换为yolov5训练的坐标
    :param size: 图片的尺寸: [w,h]
    :param box: anchor box 的坐标 [左上角x,左上角y,右下角x,右下角y,]
    :return: 转换后的 [x,y,w,h]
    """

    x1 = int(box[0])
    y1 = int(box[1])
    x2 = int(box[2])
    y2 = int(box[3])

    dw = np.float32(1. / int(size[0]))
    dh = np.float32(1. / int(size[1]))

    w = x2 - x1
    h = y2 - y1
    x = x1 + (w / 2)
    y = y1 + (h / 2)

    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return [x, y, w, h]

消防器材移走监测预警系统能够实时监测消防通道的情况,当监测到通道堵塞时,立即触发报警,通知相关人员及时处理。消防器材移走监测预警系统能够实时监测消防器材的位置和状态,一旦发现消防器材被移走或者丢失,立即触发报警,通知相关人员及时处理。系统能够保存历史监测数据和报警记录,方便相关人员查询和分析。通过智能化监测和管理,可以大大提高消防监管的效率,减少人力监管的成本。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值