山体落石泥石流滑坡监测预警系统是基于CNN-Opencv视觉算法识别技术,山体落石泥石流滑坡监测预警系统实现对高速公路、铁路以及山区高危路段山体的全天候24小时不间断实时监测。系统通过安装在现场的监控摄像头,收集实时图像数据,并通过AI算法进行分析,及时发现并预警潜在的滑坡、落石等灾害。系统设备能够不间断地监测边坡的动态态势,通过对滑坡体的隐患状态进行无人值守的实时、动态采集监测分析,系统能够实现预警预报,为用户远程自动化监测,异地监测提供了极大的便利。
YOLOX在YOLO系列的基础上做了一系列的工作,其主要贡献在于:在YOLOv3的基础上,引入了Decoupled Head,Data Aug,Anchor Free和SimOTA样本匹配的方法,构建了一种anchor-free的端到端目标检测框架,并且达到了一流的检测水平。此外,本文提出的 YOLOX-L 模型在视频感知挑战赛(CVPR 2021年自动驾驶研讨会)上获得了第一名。作者还提供了支持ONNX、TensorRT、NCNN和Openvino的部署版本。
Yolox 将 Anchor free 的方式引入到Yolo系列中,使用anchor free方法有如下好处:降低了计算量,不涉及IoU计算,另外产生的预测框数量较少。假设feature map的尺度为80x80,anchor based方法在Feature Map上,每个单元格一般设置三个不同尺寸大小的锚框,因此产生3x80x80=19200个预测框。而使用anchor free的方法,仅产生80x80=6400个预测框,降低了计算量。缓解了正负样本不平衡问题:anchor free方法的预测框只有anchor based方法的1/3,而预测框中大部分是负样本,因此anchor free方法可以减少负样本数,进一步缓解了正负样本不平衡问题。避免了anchor的调参:anchor based方法的anchor box的尺度是一个超参数,不同的超参数设置会影响模型性能。anchor free方法避免了这一点。
随着社会经济的快速发展,基础设施建设不断扩张,高速公路等交通网络的延伸使得山体滑坡、落石和泥石流等自然灾害对交通安全的影响日益凸显。为了有效预防和减少这些灾害对交通和人民生命财产的威胁,开发一套高效的山体落石泥石流滑坡监测预警系统显得尤为重要。系统采用基于卷积神经网络(CNN)结合Opencv的图像处理技术,对监控摄像头捕获的图像进行实时分析。通过对大量真实场景样本的学习,训练模型以识别和预测滑坡、落石等灾害的发生。AI算法能够根据图像中的特征变化,如地形变形、岩石移动等,及时准确地发出告警信息。
# parameters
nc: 3 # number of classes <============ 修改这里为数据集的分类数
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Focus, [64, 3]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, BottleneckCSP, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 9, BottleneckCSP, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, BottleneckCSP, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 1, SPP, [1024, [5, 9, 13]]],
[-1, 3, BottleneckCSP, [1024, False]], # 9
]
# YOLOv5 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, BottleneckCSP, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, BottleneckCSP, [256, False]], # 17
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, BottleneckCSP, [512, False]], # 20
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, BottleneckCSP, [1024, False]], # 23
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
山体落石泥石流滑坡监测预警系统基于AI算法的学习和预测能力,系统能够更准确地识别和预警潜在的灾害,减少误报和漏报的情况。山体落石泥石流滑坡监测预警系统通过及时的预警信息,系统能够有效减少交通事故的发生,保障铁路和公路运营的安全。与传统的人工监测相比,该系统能够实现24小时不间断的自动监测,大大提高了监测的效率和响应速度。山体落石泥石流滑坡监测预警系统的开发和应用,不仅提高了自然灾害的预警能力,也为交通安全管理提供了强有力的技术支持