工地货梯AI人数识别系统 Opencv

工地货梯AI人数识别系统采用人体神经网络深度学习算法,工地货梯AI人数识别系统对升降机轿厢内的人数进行智能分析和识别,能够精确识别出升降机内的人数。系统可以实时监测升降机内的人数变化,并根据设定的门限值,当人数超过限制时自动触发图像抓取和报警功能。报警方式可以通过声音、光线或者消息提示等形式,以吸引管理人员的注意。这样的实时监测和报警机制有助于管理人员及时发现和处理超载情况,避免因人数过多引发危险和事故。

 OpenCV基于C++实现,同时提供python, Ruby, Matlab等语言的接口。OpenCV-Python是OpenCV的Python API,结合了OpenCV C++API和Python语言的最佳特性。OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉处理开源软件库,是由Intel公司俄罗斯团队发起并参与和维护,支持与计算机视觉和机器学习相关的众多算法,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序,该程序库也可以使用英特尔公司的IPP进行加速处理。

随着工地安全管理的迫切需求,工地货梯AI人数识别系统应运而生。该系统基于人体神经网络深度学习算法,利用现场摄像头可以自动识别升降机轿厢中的人数,并在人数达到设定门限时抓拍图像并报警。同时,系统也能够识别未规范佩戴安全帽的人员,并自动发出警报,可以有效避免超载人数的发生。通过自动化的人数识别和报警机制,管理人员可以及时了解人数情况,并采取相应的措施,以确保施工升降机内的合理人数范围,减少了重大事故发生的概率。

class Detect(nn.Module):
    stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameter

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                y = x[i].sigmoid()
                if self.inplace:
                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1), x)

    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
        else:
            yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
        anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
            .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
        return grid, anchor_grid

工地货梯AI人数识别系统还能够识别升降机内未规范佩戴安全帽的人员,工地货梯AI人数识别系统自动发出警报。这是针对工地人员安全意识问题的应对措施。在工地施工升降机中,规定人员必须佩戴安全帽,以提供额外的保护。通过系统的识别和警报功能,可以及时提醒未佩戴安全帽的人员,促使他们遵守安全规定,减少潜在风险的发生。工地货梯AI人数识别系统在工地货梯上的应用,能够有效避免超载人数的发生,减少工地事故的风险。特别是在工地人员安全意识问题存在的情况下,该系统能够起到重要的监测作用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值