B - Hanoi tower Gym - 101243B 汉诺塔变形

题意:

给出汉诺塔原型

求在第几步的时候这个汉诺塔每一根柱子上面的盘子数一样多

题解:

打表找规律

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;

int k;
int s[10];
int hanoi(char a,char b,char c,int n)
{
    if(n==0)
        return 0;
    if(hanoi(a,c,b,n-1))
        return 1;
    --s[a-'a'],++s[b-'a'],s[c-'a'];
    if(s[a-'a']==s[b-'a']&&s[b-'a']==s[c-'a']){
        printf("%d\n",k);
        return 1;
    }
    k++;
    if(hanoi(c,b,a,n-1))
        return 1;
}

int main()
{
    int n;
    //freopen("out.txt","w",stdout);
    for(int i=3;i<=30;i+=3)
    {
        k=1;
        s[0]=i;
        s[1]=s[2]=0;
        hanoi('a','b','c',i);
    }
    return 0;
}



得到规律:

num【3】= 2,num【6】=9,num【12】=38

当 i 为奇数的时候:num【i】=num【i-3】*4+2

当 i 为偶数的时候:num【i】=num【i-3】*4 - t【i】

其中 t【i】=t【i-6】*4+21

然后大整数处理一下就可以了


import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.Scanner;

public class Main {
	public static void main(String[] args) throws FileNotFoundException {
		Scanner cin = new Scanner(new File("input.txt"));
		PrintWriter print = new PrintWriter(new File("output.txt"));
		int n;
		BigInteger []t = new BigInteger[307];
		BigInteger []num = new BigInteger[307];
		num[3] = BigInteger.valueOf(2);
		num[6] = BigInteger.valueOf(9);
		t[12] = BigInteger.valueOf(17);
		num[9] = BigInteger.valueOf(38);
		for(int i = 12;i<=300;i+=3){
			if((i%2)==0){
				num[i] = num[i-3].multiply(BigInteger.valueOf(4)).subtract(t[i]);
				t[i+6] = t[i].multiply(BigInteger.valueOf(4)).add(BigInteger.valueOf(21));
			}else {
				num[i] = num[i-3].multiply(BigInteger.valueOf(4)).add(BigInteger.valueOf(2));
			}
		}
		while(cin.hasNext()){
			n = cin.nextInt();
			print.println(num[n]);
		}
		cin.close();
		print.close();
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值