HDU 5755 Gambler Bo

 

解题思路:

这题可以对每个位置设个未知数,然后构造方程组高斯消元求解,但是这样复杂度O((n*m)^3)

代码一:

#include<cstring>
#include<string>
#include<iostream>
#include<queue>
#include<cstdio>
#include<algorithm>
#include<map>
#include<cstdlib>
#include<cmath>
#include<vector>
//#pragma comment(linker, "/STACK:1024000000,1024000000");

using namespace std;
#define INF 0x3f3f3f3f
const int MOD = 3;
const int MAXN = 905;
int a[MAXN][MAXN];
int x[MAXN];
int Gauss(int equ, int var) {
    int row, max_r, col;
    for(row = 0, col = 0; col < var && row < equ; col++, row++) {
        max_r = row;
        for(int i = row + 1; i < equ; i++) {
            if(abs(a[i][col]) > abs(a[max_r][col])) {
                max_r = i;
            }
        }
        if(!a[max_r][col]) {
            row--;
            continue;
        }
        if(row != max_r) {
            for(int j = 0; j <= var; j++) {
                swap(a[row][j], a[max_r][j]);
            }
        }
        for(int i = row + 1; i < equ; i++) {
            if(a[i][col]) {
                int lcm = a[i][col] / __gcd(a[i][col], a[row][col]) * a[row][col];
                int t1 = lcm / a[i][col];
                int t2 = lcm / a[row][col];
                for(int j = col; j <= var; j++) {
                    a[i][j] = ((a[i][j] * t1 - a[row][j] * t2) % MOD + MOD) % MOD;
                }
            }
        }
    }
    for(int i = var - 1; i >= 0; i--) {
        x[i] = a[i][var];
        for(int j = i + 1; j < var; j++) {
            x[i] = ((x[i] - a[i][j] * x[j]) % MOD + MOD) % MOD;
        }
        x[i] = a[i][i] * x[i] % MOD;

    }
}
int n,m;
int mp[50][50];
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        for(int i=0;i<n;i++)
            for(int j=0;j<m;j++)
                scanf("%d",&mp[i][j]);
            memset(a,0,sizeof a);
            for(int j=0;j<n*m;j++)
            {
                int u=j-m,d=j+m,l=j-1,r=j+1;
                a[j][j]=2;
                if(u>=0) a[j][u]=1;
                if(d<n*m) a[j][d]=1;
                if(j%m>0) a[j][l]=1;
                if(j%m<m-1) a[j][r]=1;
                a[j][n*m]=2*mp[j/m][j%m]%MOD;
            }

        int ans=Gauss(n*m,n*m);

        vector<pair<int,int> > vec;
        for(int i=0;i<n*m;i++)
        {
            for(int j=0;j<x[i];j++)
                vec.push_back(pair<int,int>(i/m+1,i%m+1));
        }
        printf("%d\n",vec.size());
        for(int i=0;i<vec.size();i++)
        {
            printf("%d %d\n",vec[i].first,vec[i].second);
        }
    }
    return 0;
}

 

思路二:

其实这题可以只设出第一行的操作次数,然后后面的行的操作必须保证前一行复位,这样用dp算出最后最后一行的系数,dp[i][j][k]表示第i行中第j个数对第k个变量的系数,就可以根据最后一行复位来列方程,进而高斯消元求解,复杂度为O(m^3)。

代码二:

#include<cstring>
#include<string>
#include<iostream>
#include<queue>
#include<cstdio>
#include<algorithm>
#include<map>
#include<cstdlib>
#include<cmath>
#include<vector>
//#pragma comment(linker, "/STACK:1024000000,1024000000");

using namespace std;
#define INF 0x3f3f3f3f
const int MOD = 3;
const int MAXN = 35;
int a[MAXN][MAXN];
int x[MAXN];
int Gauss(int equ, int var) {
    int row, max_r, col;
    for(row = 0, col = 0; col < var && row < equ; col++, row++) {
        max_r = row;
        for(int i = row + 1; i < equ; i++) {
            if(abs(a[i][col]) > abs(a[max_r][col])) {
                max_r = i;
            }
        }
        if(!a[max_r][col]) {
            row--;
            continue;
        }
        if(row != max_r) {
            for(int j = 0; j <= var; j++) {
                swap(a[row][j], a[max_r][j]);
            }
        }
        for(int i = row + 1; i < equ; i++) {
            if(a[i][col]) {
                int lcm = a[i][col] / __gcd(a[i][col], a[row][col]) * a[row][col];
                int t1 = lcm / a[i][col];
                int t2 = lcm / a[row][col];
                for(int j = col; j <= var; j++) {
                    a[i][j] = ((a[i][j] * t1 - a[row][j] * t2) % MOD + MOD) % MOD;
                }
            }
        }
    }
    for(int i = var - 1; i >= 0; i--) {
        x[i] = a[i][var];
        for(int j = i + 1; j < var; j++) {
            x[i] = ((x[i] - a[i][j] * x[j]) % MOD + MOD) % MOD;
        }
        x[i] = a[i][i] * x[i] % MOD;

    }
}
int n,m;
int mp[50][50];
int dp[50][50][50];
int dp2[50][50];
int ansx[1805],ansy[1805];
int vis[35];
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        memset(dp,0,sizeof dp);
        memset(dp2,0,sizeof dp2);
        scanf("%d%d",&n,&m);
        for(int i=1; i<=n; i++)
            for(int j=1; j<=m; j++)
                scanf("%d",&mp[i][j]),dp2[i][j]=mp[i][j];

        for(int i=1; i<=m; i++)
        {
            dp[1][i][i]=2;
            dp[1][i-1][i]=1;
            dp[1][i+1][i]=1;
            dp[2][i][i]+=1;
        }
        for(int i=2; i<=n; i++)
            for(int j=1; j<=m; j++)
                for(int k=1; k<=m; k++)
                {
                    int cc=dp[i-1][j][k];
                    dp[i][j][k]+=cc;dp[i][j][k]%=MOD;
                    dp[i][j-1][k]+=2*cc;dp[i][j-1][k]%=MOD;
                    dp[i][j+1][k]+=2*cc;dp[i][j+1][k]%=MOD;
                    dp[i+1][j][k]+=2*cc;dp[i+1][j][k]%=MOD;
                }
        for(int i=2; i<=n; i++)
        {
            for(int j=1; j<=m; j++)
            {
                int cc=dp2[i-1][j];
                dp2[i][j]+=cc;dp2[i][j]%=MOD;
                dp2[i][j-1]+=2*cc;dp2[i][j-1]%=MOD;
                dp2[i][j+1]+=2*cc;dp2[i][j+1]%=MOD;
                dp2[i+1][j]+=2*cc;dp2[i+1][j]%=MOD;
            }
        }
        for(int i=0; i<m; i++)
            for(int j=0; j<m; j++)
            {
                a[i][j]=dp[n][i+1][j+1]%MOD;
                a[i][j]=(a[i][j]+MOD)%MOD;
            }
        for(int i=0; i<m; i++)
        {
            a[i][m]=2*(dp2[n][i+1])%MOD;
            a[i][m]=(a[i][m]+MOD)%MOD;
        }
        int ans=Gauss(m,m);
        int cnt=0;
        for(int i=0; i<m; i++)
        {
            x[i]=(x[i]%MOD+MOD)%MOD;
            mp[1][i+1]+=2*x[i]; mp[1][i+1]%=MOD;
            mp[1][i]+=x[i]; mp[1][i]%=MOD;
            mp[1][i+2]+=x[i];mp[1][i+2]%=MOD;
            mp[2][i+1]+=x[i]; mp[2][i+1]%=MOD;
            for(int j=1;j<=(x[i]%MOD+MOD)%MOD;j++)
            {
                ansx[cnt]=1;
                ansy[cnt++]=i+1;
            }
        }
        for(int i=2; i<=n; i++)
        {
            for(int j=1; j<=m; j++)
            {
                mp[i-1][j]%=3;
                if(mp[i-1][j]==1)
                {
                    mp[i-1][j]+=2;mp[i-1][j]%=MOD;
                    mp[i][j]=(mp[i][j]+4)%3;
                    mp[i][j-1]=(mp[i][j-1]+2)%3;
                    mp[i][j+1]+=2;mp[i][j+1]%=MOD;
                    mp[i+1][j]+=2;mp[i+1][j]%=MOD;

                    ansx[cnt]=i;
                    ansy[cnt++]=j;
                    ansx[cnt]=i;
                    ansy[cnt++]=j;
                }
                else if(mp[i-1][j]==2)
                {
                    mp[i-1][j]+=1;mp[i-1][j]%=MOD;
                    mp[i][j]=(mp[i][j]+2)%3;
                    mp[i][j-1]=(mp[i][j-1]+1)%3;
                    mp[i][j+1]+=1;mp[i][j+1]%=MOD;
                    mp[i+1][j]+=1;mp[i+1][j]%=MOD;
                    ansx[cnt]=i;
                    ansy[cnt++]=j;
                }
            }
        }
        printf("%d\n",cnt);
        for(int i=0;i<cnt;i++)
            printf("%d %d\n",ansx[i],ansy[i]);
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值