信贷违约风险评估预测-kaggle项目

kaggle原案例
目标:为了确保贷款的安全性,需要对客户的信用或者还款能力进行评估

数据导入并预览

import pandas as pd
df = pd.read_csv(
    "https://labfile.oss.aliyuncs.com/courses/1363/HomeCredit.csv")
df.head()

df.describe()
df.shape
df.columns

数据可视化分析

查看贷款金额的分布情况

import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
%matplotlib inline

plt.figure(figsize=(12, 5))
plt.title("Distribution of AMT_CREDIT")
ax = sns.distplot(df["AMT_CREDIT"])  # 画出数据分布图

#同样的,查看收入情况的分布情况
plt.figure(figsize=(12, 5))
plt.title("Distribution of AMT_INCOME_TOTAL")
# 画出数据分布图
ax = sns.distplot(df["AMT_INCOME_TOTAL"].dropna())

#如果贷款的对象是货物的话,看一下这些货物的价格分布。
plt.figure(figsize=(12,5))
plt.title('Distribution of AMT_GOODS_PRICE')
ax = sns.distplot(df['AMT_GOODS_PRICE'].dropna())

import plotly.offline as offline
import plotly.graph_objs as go
import plotly.offline as py
from plotly.offline import init_notebook_mode, iplot
init_notebook_mode(connected=True)
offline.init_notebook_mode()

查看陪同人员情况

temp = df["NAME_TYPE_SUITE"].value_counts()
# 画出柱状图
trace = [go.Bar(x=temp.index, y=(temp / temp.sum())*100,)]
# 设置图的字体颜色等
layout = go.Layout(
    title="Who accompanied client when applying for the  application in % ",
    xaxis=dict(title='Name of type of the Suite',
               tickfont=dict(size=14, color='rgb(107, 107, 107)')),
    yaxis=dict(title='Count of Name of type of the Suite in %',
               titlefont=dict(size=16, color='rgb(107, 107, 107)'),
               tickfont=dict(size=14, color='rgb(107, 107, 107)'))
)

fig = go.Figure(data=trace, layout=layout)
iplot(fig, filename='schoolStateNames')
#结论:几乎 80% 的人都没有人陪同。而只有少部分人有家人或合伙人陪同

申请人的还款能力

temp = df["TARGET"].value_counts()
# 画出饼状图
trace = [go.Pie(labels=temp.index, values=temp.values)]
# 设置图题
layout = go.Layout(
    title='Loan Repayed or not',
)
# 显示图形
fig = go.Figure(data=trace, layout=layout)
iplot(fig)
#有超过 90% 的人没有还款能力

查看还款类型,做环形图
查看贷款类型

temp = df["NAME_CONTRACT_TYPE"].value_counts()
# 画出饼状图
trace = [go.Pie(labels=temp.index, values=temp.values, hole=0.6)]
# 设置图题
layout = go.Layout(
    title='Types of loan',
)
# 显示图形
fig = go.Figure(data=trace, layout=layout)
iplot(fig)
#Revolving loan 表示周期性贷款,类似于分期贷款。 Cash loans 贷款表示现金贷款。
#由上图可知,有超过 90% 的人申请的贷款为现金贷款。

查看申请人贷款的目的

temp1 = df["FLAG_OWN_CAR"].value_counts()
temp2 = df["FLAG_OWN_REALTY"].value_counts()
# 画出饼状图
trace = [go.Pie(labels=temp1.index, values=temp1.values, domain={"x": [0, .48]}, hole=0.6),
         go.Pie(labels=temp2.index, values=temp2.values, domain={"x": [0.5, 1]}, hole=0.6)]
# 设置图中的字体,图题等
layout = go.Layout(
    title='Purpose of loan',
    annotations=[{"font": {
        "size": 20},
        "showarrow": False,
        "text": "Own Car",
        "x": 0.15,
        "y": 0.5},
        {"font": {
            "size": 20},
         "showarrow": False,
         "text": "Own Realty",
         "x": 0.85,
         "y": 0.5}])
# 显示图形
fig = go.Figure(data=trace, layout=layout)
iplot(fig)
#有接近 34% 的人贷款的钱要花在车上, 30% 的人要花在物业上。

查看申请人的收入来源。

temp = df["NAME_INCOME_TYPE"].value_counts()
# 画出饼状图
trace = [go.Pie(labels=temp.index, values=temp.values, hole=0.4)]
# 设置图题
layout = go.Layout(
    title='Income sources of Applicant',
)
# 画出图题
fig = go.Figure(data=trace, layout=layout)
iplot(fig)
#52.1% 的人收入来源于工作,有 23.5% 的人收入来源于商业合作,有 18% 的申请者的收入主要来自于养老金。

查看申请人的婚姻状况

temp = df["NAME_FAMILY_STATUS"].value_counts()
# 画出饼状图
trace = [go.Pie(labels=temp.index, values=temp.values)]
# 设置图题
layout = go.Layout(
    title='Family Status of Applicant',
)
# 显示图形
fig = go.Figure(data=trace, layout=layout)
iplot(fig)
#结论:有 63.7% 的申请都是已婚的,有 14.7% 为单身或未婚

查看申请者的职业

temp = df["OCCUPATION_TYPE"].value_counts()
# 画出柱状图
trace = [go.Bar(x=temp.index, y=temp.values)]
# 设置图题
layout = go.Layout(
    title='Occupation of Applicant',
)
# 显示图形
fig = go.Figure(data=trace, layout=layout)
iplot(fig)
#结论:从图可以看到,人数最多的职业为工人,其次是销售员等

查看一下申请人的受教育情况

temp = df["NAME_EDUCATION_TYPE"].value_counts()
# 画出饼状图
trace = [go.Pie(labels=temp.index, values=temp.values, hole=0.5)]
# 设置图题
layout = go.Layout(
    title='Education of Applicant',
)
# 显示图形
fig = go.Figure(data=trace, layout=layout)
iplot(fig)
#有 71.5% 的人为中等学历,24% 的人为高等学历

看这些申请人的房子类型

temp = df["NAME_HOUSING_TYPE"].value_counts()
# 画出饼状图
trace = [go.Pie(labels=temp.index, values=temp.values)]
# 设置图题
layout = go.Layout(
    title='Loan Repayed or not',
)
# 显示图形
fig = go.Figure(data=trace, layout=layout)
iplot(fig)
#有 88.7% 的申请者有自己的房子或住在公寓,有 4.54% 的人跟父母一起住

上面通过可视化来观察数据集中一些基本的信息

import numpy as np
temp = df["NAME_INCOME_TYPE"].value_counts()

temp_y0 = []  # 没有偿还能力
temp_y1 = []  # 有偿还能力
for val in temp.index:
    temp_y1.append(np.sum(df["TARGET"][df["NAME_INCOME_TYPE"] == val] == 1))
    temp_y0.append(np.sum(df["TARGET"][df["NAME_INCOME_TYPE"] == val] == 0))
temp_y1 = np.array(temp_y1)
temp_y0 = np.array(temp_y0)
# 画出柱状图
trace = [go.Bar(x=temp.index, y=(temp_y1 / temp.sum()) * 100, name='YES'),
         go.Bar(x=temp.index, y=(temp_y0 / temp.sum()) * 100, name='NO'),
         go.Bar(x=temp.index, y=(temp_y1 / (temp_y0+temp_y1)) * 100, name='RATE'),
         ]
# 设置图题,字体等
layout = go.Layout(
    title="Income sources of Applicant's in terms of loan is repayed or not  in %",
    xaxis=dict(title='Income source', tickfont=dict(
        size=14, color='rgb(107, 107, 107)')),
    yaxis=dict(title='Count in %', titlefont=dict(size=16, color='rgb(107, 107, 107)'),
               tickfont=dict(size=14, color='rgb(107, 107, 107)'))
)
# 显示图形
fig = go.Figure(data=trace, layout=layout)
iplot(fig)
#YES 表示有偿还能力,NO 表示无偿还能力,RATE 表示在该取值中有偿还能力所占的比例,例如,在 Working 中,RATE 的取值越高表示当一个人的收入来源于 Working 时,该人有很大的可能有偿还能力

婚姻状况与是否有偿还能力的关系

temp = df["NAME_FAMILY_STATUS"].value_counts()
temp_y0 = []  # 没有偿还能力
temp_y1 = []  # 有偿还能力
for val in temp.index:
    temp_y1.append(np.sum(df["TARGET"][df["NAME_FAMILY_STATUS"] == val] == 1))
    temp_y0.append(np.sum(df["TARGET"][df["NAME_FAMILY_STATUS"] == val] == 0))
temp_y1 = np.array(temp_y1)
temp_y0 = np.array(temp_y0)
# 画出柱状图
trace = [go.Bar(x=temp.index, y=(temp_y1 / temp.sum()) * 100, name='YES'),
         go.Bar(x=temp.index, y=(temp_y0 / temp.sum()) * 100, name='NO'),
         go.Bar(x=temp.index, y=(temp_y1 / (temp_y0+temp_y1)) * 100, name='RATE')]
# 设置字体、图题等
layout = go.Layout(
    title="Family Status of Applicant's in terms of loan is repayed or not in %",
    xaxis=dict(title='Family Status', tickfont=dict(
        size=14, color='rgb(107, 107, 107)')),
    yaxis=dict(title='Count in %', titlefont=dict(size=16, color='rgb(107, 107, 107)'),
               tickfont=dict(size=14, color='rgb(107, 107, 107)')))
# 显示图形
fig = go.Figure(data=trace, layout=layout)
iplot(fig)
#偿还能力似乎与婚姻状况无关

同样的,看申请者职业与偿还能力的关系

temp = df["OCCUPATION_TYPE"].value_counts()

temp_y0 = []  # 没有偿还能力
temp_y1 = []  # 有偿还能力
for val in temp.index:
    temp_y1.append(np.sum(df["TARGET"][df["OCCUPATION_TYPE"] == val] == 1))
    temp_y0.append(np.sum(df["TARGET"][df["OCCUPATION_TYPE"] == val] == 0))
temp_y1 = np.array(temp_y1)
temp_y0 = np.array(temp_y0)
# 画出柱状图
trace = [go.Bar(x=temp.index, y=(temp_y1 / temp.sum()) * 100, name='YES'),
         go.Bar(x=temp.index, y=(temp_y0 / temp.sum()) * 100, name='NO'),
         go.Bar(x=temp.index, y=(temp_y1 / (temp_y0+temp_y1)) * 100, name='RATE'),
         ]
# 设置图题、字体等
layout = go.Layout(
    title="Occupation of Applicant's in terms of loan is repayed or not in %",
    width=1000,
    xaxis=dict(title='Occupation of Applicant\'s',
               tickfont=dict(size=14, color='rgb(107, 107, 107)')),
    yaxis=dict(title='Count in %', titlefont=dict(size=16, color='rgb(107, 107, 107)'),
               tickfont=dict(size=14, color='rgb(107, 107, 107)'))
)
# 显示图形
fig = go.Figure(data=trace, layout=layout)
iplot(fig)
#由图可知,像管理员、核心员工等这些职业的偿还能力都较低,而像工人、驾驶司机等职业要高一点。

预测模型

删除掉存在缺失值的特征列

df_drop = df.dropna(axis=1)
df_drop.head()

编码特征

from sklearn import preprocessing
# 取出非数值的列
categorical_feats = [
    f for f in df_drop.columns if df_drop[f].dtype == 'object'
]
# 对非数值的列进行编码
for col in categorical_feats:
    lb = preprocessing.LabelEncoder()
    lb.fit(list(df_drop[col].values.astype('str')))
    df_drop[col] = lb.transform(list(df_drop[col].values.astype('str')))
#查看编码结果
df_drop.head()

划分数据

#SK_ID_CURR 列为顾客的 ID ,因此要将此列删除掉
df_drop1 = df_drop.drop('SK_ID_CURR',axis=1)

#提取训练特征数据和目标值。这里的目标值就是申请者的偿还能力,在数据集中为 TARGET 列。
data_X = df_drop1.drop("TARGET", axis=1)
data_y = df_drop1['TARGET']

划分数据集为训练数据集和测试数据集。因为数据集较大,只取了 20% 的数据来作为训练集。

from sklearn import model_selection

train_x, test_x, train_y, test_y = model_selection.train_test_split(data_X.values,
                                                                    data_y.values,
                                                                    test_size=0.8,
                                                                    random_state=0)

随机森林

from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()  # 构建模型
model.fit(train_x, train_y)  # 训练模型
#测试一下模型的准确率
from sklearn import metrics
y_pred = model.predict(test_x)  # 预测测试集
metrics.accuracy_score(y_pred, test_y)  # 评价预测结果
#使用 sklaern 提供的分类报告方法来得到一个全面的评估
print(metrics.classification_report(y_pred, test_y))

#分析特征的重要性
features = data_X.columns.values  # 取出数据集中的列名,即特征名
# 得到特征与其重要性
x, y = (list(x) for x in zip(*sorted(zip(model.feature_importances_, features),
                                     reverse=False)))
# 画出柱状图
trace2 = go.Bar(x=x, y=y, marker=dict(color=x, colorscale='Viridis', reversescale=True),
                name='Random Forest Feature importance', orientation='h',)
# 设置图题、字体等
layout = dict(title='Barplot of Feature importances', width=900, height=2000,
              yaxis=dict(showgrid=False, showline=False, showticklabels=True,), margin=dict(l=300,))
# 显示图形
fig1 = go.Figure(data=[trace2])
fig1['layout'].update(layout)
iplot(fig1, filename='plots')

使用多种方法来预测模型

from sklearn.tree import DecisionTreeClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import BaggingClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression

# 构建 7 种算法
models = [LogisticRegression(solver='lbfgs'),       # 逻辑回归
          RandomForestClassifier(n_estimators=100),  # 随机森林
          DecisionTreeClassifier(),                 # 决策树
          MLPClassifier(max_iter=100),              # 多层感知机
          AdaBoostClassifier(),                     # 自适应梯度提升
          BaggingClassifier(),                      # 装袋算法
          GradientBoostingClassifier()]             # 梯度提升算法

model_name = ['LogisticRegression',
              'RandomForestClassifier',
              "DecisionTreeClassifier",
              'MLPClassifier',
              'AdaBoostClassifier',
              'BaggingClassifier',
              'GradientBoostingClassifier']

acc = []        # 存放各算法的准确率
f1 = []         # 存放各算法的 f1 值
recall = []     # 存放各算法的召回率

for model in models:  # 训练每个算法
    model.fit(train_x, train_y)
    acc.append(model.score(test_x, test_y))
    y_pred = model.predict(test_x)
    f1.append(metrics.f1_score(y_pred, test_y))
    recall.append(metrics.recall_score(y_pred, test_y))

# 打印每种算法的评估结果
pd.DataFrame({"name": model_name, "acc": acc, "f1": f1, "recall": recall})
#除了决策树分类(DecisionTreeClassifier)和感知机分类(MLPClassifier)之外,大部分算法的准确率均超过了 90% 。
  • 5
    点赞
  • 45
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
信贷违约预测是指使用机器学习算法来预测借款人是否有违约行为。XGBoost(eXtreme Gradient Boosting)是一种流行的机器学习模型,该模型在信贷违约预测中被广泛应用。 XGBoost是一种集成学习模型,它通过多次迭代训练来提高预测准确性。模型会根据之前迭代中的错误情况进行调整,从而使得下一次迭代的预测更准确。这种迭代的方式使得XGBoost能够有效地处理大量的特征和样本,提高了模型的性能。 在信贷违约预测中,首先需要准备数据集,包括借款人的个人信息、信用历史、借款金额等。然后,将数据集划分为训练集和测试集。训练集用于训练XGBoost模型,而测试集用于评估模型的准确性。 在训练过程中,XGBoost会根据每个样本的特征和标签进行学习,并构建一棵决策树。通过多次迭代,不断优化决策树的分裂点,使得模型能够更好地区分违约和非违约样本。 在预测阶段,将测试集输入训练好的XGBoost模型中,模型会根据借款人的特征来预测其是否会违约预测结果可以是二分类,即会违约或不会违约,也可以是概率值,表示借款人违约的可能性。 通过评估模型在测试集上的准确性、精确度和召回率等指标,可以评估XGBoost模型在信贷违约预测中的表现。如果模型的准确性较高,说明XGBoost逼近了信贷违约预测的真实情况。 总之,XGBoost作为一种强大的机器学习模型,可以有效预测信贷违约情况,帮助金融机构或借款人进行风险评估和决策-making。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值