人工智能知识点记录

1.构成产生式系统的基本元素有(综合数据库) (产生式规则) (控制系统),控制策略按执行规则的方式分类,分为(搜索策略) (冲突消解策略) (正向反向双向推理)三类。

2.归结过程中控制策略的作用是给出控制策略,以使仅对选择合适的子句间方可做归结,避免(多余的、不必要的归结式出现)。常见的控制策略有(推理方向)(求解策略)(限制策略)(冲突消解策略)。

3.公式G和公式S的子句集并不等值,但它们在(不可满足)的意义下是一致的。 

4.与或图的启发式搜索算法(AO*算法)的两个过程分别是(图生成的过程)和(计算耗散值的过程)。 

5人工智能的研究途径主要有两种不同的观点,一种观点称为(符号主义),认为人类智能基本单元是(符号)。另一种观点称为(连接主义),认为智能的基本单元是(神经元)。 

6.集合{P(a, x, f (g(y)),  P(z, fz,f(u)))mgu(最一般合一置换)为(         )。

7.语义网络是对知识的(有向图)表示方法,一个最简单的语义网络是一个形如(结点1,弧,结点2)的三元组,语义网络可以描述事物间多种复杂的语义关系、常用ISA、AKO弧表示节点间具有(具体与抽象、子类与超类)的分类关系。语义网络下的推理是通过(继承和匹配)实现的。

8.按综合属性分类,机器学习可分为(连接)、(归纳)、(分类器系统)和遗传算法与分类器系统。一个机器学习系统应有(环境)、(学校)、(知识库)和(执行与评价)四个基本部分组成。

9.常用的知识表示法有逻辑表示法、(产生式表示法)、(语义网络表示法)、(脚本表示法)、(过程表示法)等

10.有两个A*算法A1A2,若A1A2有较多的启发信息,则

h1(n)(大于、等于、小于  ) h2(n)

11.关于A算法与A*算法,若规定h(n)≥0,并且定义启发函数:f*(n)=g*(n)+h*(n) 表示初始状态S0经点n到目标状态Sg最优路径的费用。其中g*(n)为S0到n的最小费用, h*(n)为到Sg的实际最小费用。若令 h(n)≡0,则A算法相当于(广度优先算法),因为上一层节点的(搜索费用)一般比下一层的小。若(g(n)≡h(n)≡0)则相当于随机算法。若(g(n)≡0),则相当于最佳优先算法。特别是当要求(h(n)<=h*(n)) 就称这种A算法为A*算法。

12.群智能是指无智能或简单智能的主体通过任何形式的聚集协同而表现出智能行为的特性。群智能潜在的两大特点是(并行性)(分布式)。其典型算法有(蚁群算法)和(粒子群算法)。已有的群智能理论的研究和应用证明群智能方法是一种能够有效解决(大多数全局优化问题)的新方法。

13、蚁群算法是模拟自然界中蚂蚁寻找从巢穴到食物的最佳路径的行为而设计的,蚂蚁在遇到食物返回的路上会分泌(信息素),信息素会随着时间慢慢挥发,且关键路径上的信息素相对浓度(高),蚁群算法已被广泛应用于许多优化问题中,其中有(车辆路径问题的应用 邮政投递 火车及汽车的调度 港口装卸集装箱 )(聚类问题)(路由算法设计)(图着色)。

14、粒子群优化算法是模拟(鸟群)或(蜂群)的觅食行为而设计的,其基本思想是通过群体中(个体之间的协作)和(信息共享)来寻找最优解。粒子群优化算法的应用领域有(军事领域)(车辆路径问题)(车辆调度)(港口装卸集装箱)。

15、遗传算法是以达尔文的自然选择学说为基础发展起来的。遗传算法的三种基本操作是(复制)(交叉)(变异);在遗传算法中,衡量个体优劣的尺度是(适应度),它决定某些个体是繁殖或是消亡,同时也是驱动遗传算法的动力。

16、蚁群算法是模拟自然界中蚂蚁寻找从巢穴到食物的最佳路径的行为而设计的,依据蚁群算法的基本原理,蚁群算法中的行为因子有(范围)(环境)(觅食规则) (移动规则) (避障规则) (信息素规则).

17、近年有学着提出的人工鱼群算法(Artificial Fish Swarm Algorithm-AFSA)是模仿自然界中鱼群的行为而提出来的解决问题的算法,从模拟鱼群的(觅食)行为、(集群)行为、(跟随)行为和(随机游动)行为等方面来模拟自然界中的鱼群行为。 

18、遗传算法将“优胜劣汰,适者生存”的(生物进化原理)引入优化参数形成的编码串群体中,按所选择的(适应度函数)并通过遗传中的(复制)、(交叉)及(变异)对个体进行(筛选),(适应度高)的个体被保留下来,组成新的群体,新的群体既继承了上一代的信息,又优于上一代。

19、决策树是一种知识概念表示方法,能表示(与或)规则;是一种(图形符号表示)。而人工神经网络(ANNs)是(非图形符号)表示法,又是一种函数表示法;即从大量的数据中(抽取规则函数)。人工神经网络对于训练数据中的“错误”数据的(错误健壮性很好)。 人工神经网络的训练学习过程中有一个称为“学习速率η”的常数,η取值过大会(引起漂移),η取值过小会(收敛速度太慢,学习效率不高)。

20、多层神经网络的学习过程中有一种是反向传播算法(Back Propagation-BP),其基本思想是利用(输出单元的误差再计算上一层单元的误差),以次向上传播,俗称反向传播。又称(逆推学习)算法。

21、归纳学习需要的预先假定,称为归纳偏置,归纳学习算法隐含了归纳偏置,候选消除算法的归纳偏置是(对待考虑假设的一种限定)-所以又称限定偏置。ID3是一种典型的决策树学习方法,ID3的归纳偏置有两点,分别是(优先选择较短的树而不是较长的 ),(选择那些信息增益高的属性里根节点较近的树 )。 

22、自然语言处理是研究用机器处理人类语言的理论和技术,又叫(自然语言理解、计算语言学、人类语言技术), 它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法自然语言处理研究面临的两大困难是(歧义)(病构),其中歧义分为(注音歧义)( 分词歧义)( 短语歧义)( 语用歧义)四个方面.

23贝叶斯网就是一个在弧的连接关系上加入连接强度的因果关系网络 。 有两个部分组成,其一是DAG,即:(有向无环图);其二是CPT,即:(条件概率表)。贝叶斯网络通常使用三种推理是(因果推理),(诊断推理),(辩解推理)。

25在确定性推理模型中可信度因子CF(H,E)(知识的静态强度 )取值范围为([-1,1]);主观Bayes方法中规定规则的静态强度LS,LN的值应(不能同时 >1或 <1,可同时=1

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值