人工智能知识点总结

人工智能知识点总结

  • 什么是人工智能?它的研究目标是什么
    它是计算机科学的一个分支,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。它的研究目标是人工智能的目标是提出建造人工智能系统的新技术、新方法和新理论,并在此基础上研制出具有智能行为的计算机系统。

  • 人工智能的研究领域主要包括?它们分别的具体研究内容是?
    –机器人
    –语言识别
    –图像识别
    –自然语言处理
    –专家系统
    –机器学习

  • 人工智能有哪几个主要学派?各自的特点是什么?
    –符号主义学派:基于符号运算的人工智能学派,认为知识可以用符号来表示,认知可以用符号运算来实现,例如专家系统
    –联结主义学派:即神经网络学派
    –行为主义学派:进化主义学派

  • 产生式系统是什么?特点?
    产生式系统(production system)是指认知心理学程序表征系统的一种。为解决某一问题或完成某一作业而按一定层次联结组成的认知规则系统。由全局数据库、产生式规则和控制系统三部分组成。每一产生式规则由条件(即当前的状态或情境)和行动两部分组成,其基本规则是“若条件X,则实施行动Y”,即当一个产生式中的条件得到满足,则执行该产生式规定的某个行动。
    –主要优点:自然性、模块性、有效性、一致性
    –主要缺点:效率较低、不能表示结构性知识

  • 语义网络的概念及结构
    语义网络是通过概念及其语义关系来表示知识的一种网络图,它是一个带标记的有向图。其中有向图的各节点用来表示各种概念、事物、属性、情况、动作、状态等,节点上的标注用来区分各节点所表示的不同对象,每个节点可以带有若干个属性,弧是有方向,有标注的,可以表示主次关系,某种语义联系或语义关系。

  • 什么是专家系统?
    智能计算机程序系统,其内部含有大量的某个领域专家水平的知识和经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题

  • 什么是机器学习?
    专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

  • 都有什么机器学习算法?
    线性回归、逻辑回归、决策树模型、支持向量机、贝叶斯分类器、神经网络(MLP/CNN/RNN/LSTM/GAN)、聚类算法

  • 机器学习的分类?
    监督学习(分类任务、回归任务)、无监督学习(聚类任务)、迁移学习、强化学习

  • 人工智能的问题领域?
    语言识别、字符识别、计算机视觉、自然语言处理、数据挖掘etc

  • 计算智能?
    如果说人工智能是以知识库为基础、那么计算智能则是以模型为基础、以分步、并行、仿生计算为特征含数据、算法和实现的信息系统。前者强调规则的形式和表示,后者强调模型的建立和构成;前者依赖专家知识,后者强调系统的自组织、自学习和自适应。
    计算智能的三个主要分支是:人工神经网络,遗传算法,模糊逻辑。

  • 自然语言处理?
    自然语言处理(NLP)是指机器理解并解释人类paralyzes写作、说话方式的能力。
    NLP 的目标是让计算机/机器在理解语言上像人类一样智能。最终目标是弥补人类交流(自然语言)和计算机理解(机器语言)之间的差距。
    自然语言处理(NLP)是计算机科学,人工智能,语言学关注计算机和人类(自然)语言之间的相互作用的领域。因此,自然语言处理是与人机交互的领域有关的。在自然语言处理面临很多挑战,包括自然语言理解,因此,自然语言处理涉及人机交互的面积。在NLP诸多挑战涉及自然语言理解,即计算机源于人为或自然语言输入的意思,和其他涉及到自然语言生成,下图为自然语言处理相关技术和内容。

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读