Label Decoupling Framework for Salient Object Detection 论文阅读记录

 

Label Decoupling Framework for Salient Object Detection 

 

1.主要贡献

        为了得到更加精确的显著图,主流显著性目标检测算法致力于从全卷积网络(FCN)中聚集更加丰富完善的多尺度特征,并引入边缘信息作为辅助监督损失。虽然这些方法在性能上取得了很大的进展,但作者发现,像素越靠近边缘,预测就越困难,因为边缘像素具有非常不平衡的分布。针对这一问题,作者提出了一个标签解耦框架(LDF),该框架主要由标签解耦(LD)和特征交互网络(FIN)组成。如图1所示,标签解耦显式地将原始显著图分解为主体图和细节图两部分,其中主体图主要集中在目标中心区域,细节图主要集中在目标边缘附近区域。与传统的边缘监督不同,细节图相对于目标边缘覆盖了更广的区域也包含更多信息。同时,主体图丢弃了目标边缘像素,只关注中心区域。这成功地避免了训练过程中边缘像素的有害影响。此外,特征交互网络被设计成双分支结构以分别处理主体图和细节图,如图2所示。考虑到主体图和细节图特征的互补性,作者设计了特征交互(FI)以融合两个分支来预测最终的显著图,同时利用融合后的特征分别对两个分支进行特征细化。通过这种迭代的方式有助于学习更好的表示并得到更精确的显著图。在6个基准数据集上的综合实验表明,该算法在不同的评价指标上都优于最新的方法。

fig1
fig1
fig2

2.Body label & Detail label的生成方法

step1:生成权值矩阵{I}',其中I_{fg}表示前景图,I_{bg}表示背景图,p,q为任意像素点。

              

step2:生成Body label和Detail label 

3.损失函数

其中,k表示迭代次数,损失函数表示多次迭代时的损失函数。

4.FIN moudule

        这篇论文还有一个独特的设计,就是融合两分支的方法,具体的结构并没有什么特别新颖的地方,但是,作者提出一种迭代融合的方法融合body分支和detail分支,并通过实验选择了合适的迭代次数。迭代过程中,第i+1次迭代使用第i次的迭代结果。

5.实验结果

6.结果分析

        论文中,作者强调,他们的方法可以使得分割结果在图像边缘附近更加准确。具体数据见fig6,本人从上述数据也做出了自己的思考,首先,将问题分为主体图与细节图然后再考虑融合可能是有意义的,因为本来深度网络解决SOD问题就有“分割物体不全”、“边缘信息不全”等问题,主体图则能让结果获得一个更全面的物体,而细节图则致力于使结果得到更清晰的边缘信息,因此感觉该设计是合理的,另外一个比较有意思的设计就是这个迭代过程,虽然消融实验来看,效果甚微,但高精度下仍然是有提升的,感觉这种迭代思想是值得借鉴于学习的。

 

 

 

 

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值