算法基础篇 — 图的最短路

文章介绍了几种经典的图论算法,包括朴素Dijkstra算法及其堆优化版本,适用于处理单源最短路径问题,特别是正权边的稠密图和稀疏图。接着讨论了Bellman-Ford算法,能够处理含有负权边的情况。SPFA算法作为负权边环境下的替代方案,虽然平均情况效率较高,但最坏情况下与Dijkstra相当。最后,Floyd算法用于解决多源汇最短路问题,通过动态规划的方式更新所有顶点间的最短路径。
摘要由CSDN通过智能技术生成

整体框架

整体框架


朴素Dijkstra

时间复杂度O(n² + m),n 表示点数,m 表示边数

适用场景

单源最短路 + 只有正权边 + 稠密图

模拟思路

  1. 创建一个布尔类型数组st,用于记录每个顶点的访问状态。初始化数组中所有元素为未访问状态false。

  2. 创建一个整型数组dist,用于记录从起始顶点到每个顶点的最短路径长度。初始化数组中所有元素为无穷大。

  3. 将起始顶点的最短路径长度设置为0。

  4. 对于图中的每个顶点,执行n次以下循环(其中n为顶点数量):

    a. 在未访问的顶点中,选择距离起始顶点最近的顶点,将其标记为已访问。

    b.如果通过当前顶点可以获得更短的路径长度,则更新dist数组中对应顶点的值。

  5. 最终,dist数组中存储了从起始顶点到每个顶点的最短距离。

算法模板

int g[N][N];  // 存储每条边
int dist[N];  // 存储1号点到每个点的最短距离
bool st[N];   // 存储每个点的最短路是否已经确定

// 求1号点到n号点的最短路,如果不存在则返回-1
int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    for (int i = 0; i < n - 1; i ++ )
    {
        int t = -1;     // 在还未确定最短路的点中,寻找距离最小的点
        for (int j = 1; j <= n; j ++ )
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;

        // 用t更新其他点的距离
        for (int j = 1; j <= n; j ++ )
            dist[j] = min(dist[j], dist[t] + g[t][j]);

        st[t] = true;
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

堆优化Dijkstra

时间复杂度O(mlogn),n 表示点数,m 表示边数

适用场景

单源最短路 + 只有正权边 + 稀疏图

模拟思路

  1. 创建一个整型数组dist,用于记录从起始顶点到每个顶点的最短路径长度。初始化数组中所有元素为无穷大。

  2. 将起始顶点的最短路径长度设置为0。

  3. 创建一个最小堆heap,用于选择当前最短距离的顶点。并将起始顶点及其距离0加入堆中。

  4. 当最小堆不为空时,执行以下循环:

    a. 弹出堆顶元素,即距离最短的顶点。

    b. 如果顶点已经确认了最短距离,忽略该顶点进行下一次循环。

    c. 遍历其邻接顶点,如果邻接顶点未访问过且通过当前顶点可以获得更短的距离,则更新dist数组中邻接顶点的距离,并将邻接顶点及其距离加入最小堆。

  5. 最终,dist数组中存储了从起始顶点到每个顶点的最短距离。

算法模板

typedef pair<int, int> PII;

int n;      // 点的数量
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储所有点到1号点的距离
bool st[N];     // 存储每个点的最短距离是否已确定

// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    priority_queue<PII, vector<PII>, greater<PII>> heap;
    heap.push({0, 1});      // first存储距离,second存储节点编号

    while (heap.size())
    {
        auto t = heap.top();
        heap.pop();

        int ver = t.second, distance = t.first;

        if (st[ver]) continue;
        st[ver] = true;

        for (int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > distance + w[i])
            {
                dist[j] = distance + w[i];
                heap.push({dist[j], j});
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

Bellman-Ford

时间复杂度O(nm),n 表示点数,m 表示边数

适用场景

单源最短路 + 负权边 + 有边数限制

算法模板

int n, m;       // n表示点数,m表示边数
int dist[N];        // dist[x]存储1到x的最短路距离
int backup[N];  // 备份数组

struct Edge   // 边,a表示出点,b表示入点,w表示边的权重
{
    int a, b, w;
}edges[M];

// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    // 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
    for (int i = 0; i < n; i ++ )
    {
    	memcpy(backup, dist, sizeof dist);
        for (int j = 0; j < m; j ++ )
        {
            int a = edges[j].a, b = edges[j].b, w = edges[j].w;
            dist[b] = min(dist[b], backup[a] + w);
        }
    }

    if (dist[n] > 0x3f3f3f3f / 2) return -1;
    return dist[n];
}

SPFA

时间复杂度 平均情况下O(m),最坏情况下 O(nm),n 表示点数,m 表示边数

适用场景

单源最短路 + 负权边

模拟思路

  1. 创建一个整型数组dist,用于记录从起始顶点到每个顶点的最短路径长度。初始化数组中所有元素为无穷大。

  2. 创建一个布尔类型的st数组,用于记录每个顶点是否在队列中。初始化数组中所有元素为未访问状态false。

  3. 创建一个队列来存储待访问的顶点。

  4. 将起始顶点的最短路径长度设置为0,并将其标记为已经入队。

  5. 在队列不为空的情况下,执行以下循环:

    a.出队队首元素,将其状态修改为不在队列中。

    b.遍历其邻接顶点,如果邻接顶点未访问过且通过当前顶点可以获得更短的距离,则更新distance数组中邻接顶点的距离,并且如果该邻接顶点不在队列中,则将其加入队列,并将其标记为已经入队。

  6. 最终,distance数组中存储了从起始顶点到每个顶点的最短距离。

算法模板

int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储每个点到1号点的最短距离
bool st[N];     // 存储每个点是否在队列中

// 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
int spfa()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    queue<int> q;
    q.push(1);
    st[1] = true;

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if (!st[j])     // 如果队列中已存在j,则不需要将j重复插入
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

floyd

时间复杂度O(n³),n 表示点数

适用场景

多源汇最短路

模拟思路

  1. 创建一个二维数组 dist,用于存储任意两个顶点之间的最短路径长度。初始化数组中对角线元素为0,非对角线元素为无穷大。

  2. 对于图中的每个顶点 k,执行 n 次以下循环(其中 n 为顶点数量):

    a.对于每对顶点 i 和 j,进行以下循环:

    如果从顶点 i 到顶点 k 经过顶点 j 的路径长度比当前的最短距离小,则更新dist数组中对应顶点的值。

  3. 最终,dist数组中存储了从起始顶点到每个顶点的最短距离。

算法模板

初始化:
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= n; j ++ )
            if (i == j) d[i][j] = 0;
            else d[i][j] = INF;

// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
    for (int k = 1; k <= n; k ++ )
        for (int i = 1; i <= n; i ++ )
            for (int j = 1; j <= n; j ++ )
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值