数列的求和
本节内容摘自Easymath-wiki,在Easymath上的这篇文章作者也是我!请大家多多点赞,也可以在GitHub上加个star鸭。
话不多说,我们这一节一起来回顾一下高中常用的各种知识!
我们先简单了解一下连加号,随后讲述数列的基本求和方法。
求和和不定积分一样,并没有固定的方法。以下我们只是总结了一部分常用的求和方法。
除了这些求和方法以外,还有很多其他的求和方法。甚至,还有很多函数的求和式无法用初等函数或者各种常见的函数表达。
连加号和积分实际上存在某种程度的对应,前者是离散的累积,后者是连续的累积。
很多的离散公式,其对应的有一个连续的版本,而离散就对应求和,连续就对应不定积分或定积分。
当有相似的公式时,可以将它们类比记忆。
连加号的概念和基本性质
连加号的定义
在数学上,若干个数(或其他数学对象)连续相加的表达式
a m + a m + 1 + a m + 2 + ⋯ + a n a_m + a_{m+1} + a_{m+2} + \cdots + a_n am+am+1+am+2+⋯+an
(其中 m , n ∈ Z m,n \in \mathbb{Z} m,n∈Z,且 m < n m < n m<n)非常常见。为了简便,我们通常将它记作:
∑ k = m n a k . \sum_{k=m}^n a_k. k=m∑nak.
其中符号 ∑ \sum ∑称为连加号,实际上就是希腊字母 Σ \Sigma Σ(Sigma), a k a_k ak则表示一般项,而下标中 k k k为求和指标,它只是一个辅助的变量(可以类比编程函数的局部变量),标记求和中改变的值。下标 k = m k=m k=m和上标 n n n共同表示 k k k从 m m m以步长1递增到 n n n(也就是,取 m , m + 1 , m + 2 , … , n m,m+1,m+2,\dots,n m,m+1,m+2,…,n)
只要不与其他变量冲突,辅助变量的字母是任意的,通常取 i , j , k , m i,j,k,m i,j,k,m。
连加号的上限也可能为无穷大 ∞ \infty ∞:
∑ n = 1 ∞ ( − 1 ) n + 1 1 n . \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}. n=1∑∞(−1)n+1n1.
这种情况的连加号表示无穷项相加,是一个级数。我们这里只讨论有限项的连加,不考虑无限项相加的情况。
以下是一些连加号的使用举例:
数列 a n = n a_n = n an=n的前 n n n项和为:
∑ i = 1 n i = 1 + 2 + ⋯ + n . \sum_{i=1}^{n} i = 1 + 2 + \cdots + n. i=1∑ni=1+2+⋯+n.
二项式定理可以表示为:
( x + y ) n = ∑ k = 0 n C n k x k y n − k . (x + y)^n = \sum_{k = 0}^{n} \mathrm{C}_n^k x^k y^{n-k}. (x+y)n=k=0∑nCnkxkyn−k.
在回归分析中,经过样本点 ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x n , y n ) (x_1,y_1),(x_2,y_2),\dots,(x_n,y_n) (x1,y1),(x2,y2),…,(xn,yn)的拟合直线(目标函数使用最小二乘函数)的斜率估计值可以表示为:
k ^ = ∑ i = 1 n ( x i − x ˉ ) ( y i − y ˉ ) ∑ i = 1 n ( x i − x ˉ ) 2 . \hat{k} = \frac{\displaystyle \sum_{i=1}^n (x_i - \bar{x}) (y_i - \bar{y})}{\displaystyle \sum_{i=1}^n (x_i - \bar{x})^2 }. k^=i=1∑n(xi−xˉ)2i=1∑n(xi−xˉ)(yi−yˉ).
连加号也不一定表示数的相加。高等代数中线性子空间的和 V 1 + V 2 + ⋯ + V n V_1 + V_2 + \cdots + V_n V1+V2+⋯+Vn也可以表示为
∑ i = 1 n V i . \sum_{i=1}^n V_i. i=1∑nVi.
Tip
很多时候,数学书上的公式为了简便会写成连加号。
但其实,连加号看起来并不是很直观。所以当你感到难以理解时,应该将连加号展开,写成带省略号的加和表达式。很多时候,只是这样小小的一步,一个表达式瞬间就清晰了很多。
条件求和
有些时候求和号是对满足某种关系的项进行求和,这时候 ∑ \sum ∑下写的就是需要满足的关系。
例如,Vander Monde行列式的公式
D k = ∑ i < j ( a j − a i ) D_k = \sum_{i<j} (a_j - a_i) Dk=i<j∑(aj−ai)
便是将所有满足条件 i < j i < j i<j的项作差再求和。
再如,两个多项式 p ( x ) = ∑ k = 0 m a k x k p(x) = \displaystyle \sum_{k=0}^m a_k x^k p(x)=k=0∑makxk, q ( x ) = ∑ k = 0 n b k x k q(x) = \displaystyle \sum_{k=0}^n b_k x^k q(x)=k=0∑nbkxk的乘积的 k k k次项的系数可以写为:
c k = ∑ i + j = k a i b j . c_k = \sum_{i + j = k} a_i b_j. ck=i+j=k∑aibj.
这里表示将下标之和为 k k k的项乘起来,i.e.
c k = a 0 b k + a 1 b k − 1 + a 2 b k − 2 + ⋯ + a k b 0 . c_k = a_0 b_k + a_1 b_{k-1} + a_2 b_{k-2} + \dots + a_k b_0. ck=a0bk+a1bk−1+a2bk−2+⋯+akb0.
连加号的基本性质
连加号本质上就是几个数之间加法的简写,所以自然地有以下性质:
可加性
∑ k = m n ( x k + y k ) = ∑ k = m n x k + ∑ k = m n y k . \sum_{k=m}^n (x_k + y_k) = \sum_{k=m}^n x_k + \sum_{k=m}^n y_k . k=m∑n(xk+yk)=k=m∑nxk+k=m∑nyk.
这条规律由加法的结合律容易看出来,这也是分组求和法的基础。
Proof
回忆上面的Tip,我们只需要将左边展开写成和式:
∑ k = m n ( x k + y k ) = ( x m + y m ) + ( x m + 1 + y m + 1 ) + ⋯ + ( x n + y n ) = ( x m + x m + 1 + ⋯ + x n ) + ( y m + y m + 1 + ⋯ + y n ) = ∑ k = m n x k + ∑ k = m n y k . \sum_{k=m}^n (x_k + y_k) = (x_m + y_m) + (x_{m+1} + y_{m+1}) + \cdots + (x_n + y_n)\\ = (x_m + x_{m+1} + \cdots + x_n) + (y_m + y_{m+1} + \cdots + y_n)\\ = \sum_{k=m}^n x_k + \sum_{k=m}^n y_k.\\ k=m∑n(xk+yk)=(xm+ym)+(xm+1+ym+1)+⋯+(xn+yn)=(xm+xm+1+⋯+xn)+(ym+ym+1+⋯+yn)=k=m∑nxk+k=m∑nyk.
其中第二个等号利用了结合律。
这再次印证了上面这句话:当你感到难以理解时,应该将连加号展开,写成带省略号的加和表达式。
一阶齐次性(常数提取)
若 k k k是一个常数:
∑ i = m n k x i = k ∑ i = m n x i . \sum_{i=m}^n k x_i = k \sum_{i=m}^n x_i. i=m∑nkxi=ki=m∑nxi.
这是乘法分配律的直接推论。
可加性和一阶齐次性可以统称为线性(linearity)。也就是说,连加号满足以下的性质:
∑ k = m n ( a x k + b y k ) = a ∑ k = m n x k + b ∑ k = m n y k . \sum_{k=m}^n (ax_k + by_k) = a\sum_{k=m}^n x_k + b\sum_{k=m}^n y_k. k=m∑n(axk+byk)=ak=m∑nxk+bk=m∑nyk.
其中 a a a和 b b b是常数。
或者可以说,连加计算是一个线性映射(Linear map)或者线性泛函(Linear functional)。
交换次序
∑ i = 1 m ∑ j = 1 n a i j = ∑ j = 1 n ∑ i = 1 m a i j \sum_{i=1}^m \sum_{j=1}^n a_{ij} = \sum_{j=1}^n \sum_{i=1}^m a_{ij} i=1∑mj=1∑naij=j=1∑ni=1∑maij
这也是加法交换律和加法结合律的直接推论。
对于交换次序这个性质,一种直观的理解就是,表格中的数可以先按列求和、再按行求和,也可以先按行求和、再按列求和,例如:
第一列 | 第二列 | 第三列 | 行合计 | |
---|---|---|---|---|
第一行 | 1 | 2 | 3 | 6 |
第二行 | 4 | 5 | 6 | 15 |
第三行 | 7 | 8 | 9 | 24 |
列合计 | 12 | 15 | 18 | 45 |
这里第四行的“列合计”可以看作先按列求和,而第四列的“行合计”可以看作先对行求和,但是汇总后,列合计的三个数之和,也等于行合计的三个数之和。
Warning
研究连加号交换次序的性质时,我们针对的都是有限项的求和,要求两个求和指标都是对有限个求和。
这个结论不能轻易推广到无限项相加(级数),在级数上未必成立!
常数、等差、等比数列的求和
这是三个基本公式。
- 若 a n = a a_n = a an=a( a a a为常数),则 S n = n a S_n = na Sn=na。
- 若 a n a_n an为等差数列,也就是 a n = a 1 + d ( n − 1 ) a_n = a_1 + d(n - 1) an=a1+d(n−1),则:
S n = ( a 1 + a n ) n 2 = a 1 n + d n ( n − 1 ) 2 = ( a 1 − d 2 ) n + d 2 n 2 . S_n =\frac{(a_1+a_n)n}{2} \\ =a_1 n + \frac{dn(n-1)}{2} \\ =\left( a_1 - \frac{d}{2} \right) n + \frac{d}{2} n^2. Sn=2(a1+an)n=a1n+2dn(n−1)=(a1−2d)n+2dn2.
- 若 a n a_n an为等比数列,也就是 a n = a 1 q n − 1 a_n = a_1 q^{n-1} an=a1qn−1,则:
S n = a 1 ( 1 − q n ) 1 − q S_n = \frac{a_1(1-q^n)}{1-q} Sn=1−qa1(1−qn)
第一个公式是显然的,依据就是乘法的定义;而等差、等比两个公式,证明方法将在下面展示。
高中常见的求和方法
以下的几种求和方法在高中已经很常见,现在罗列出来供大家参考。
倒序相加法/两两组合
倒序相加法针对的是有中心对称点的数列。
当一个数列 { a n } \{a_n\} {an}有中心对称点 ( m , s ) (m,s) (m,s)时( m m m为整数,或小数部分为 0.5 0.5 0.5的有理数),对称位置的两项 a m − r , a m + r a_{m-r},a_{m+r} am−r,am+r便可以凑在一起,这样它们的和就是 a m − r + a m + r = 2 s a_{m-r} + a_{m+r} = 2s am−r+am+r=2s。
最经典的例子便是等差数列求和,我们推理如下:
等差数列求和公式推导
设等差数列 { a n } \{a_n\} {an}的公差为 d d d,其前 n n n项和为 { S n } \{S_n\} {Sn},那么
S n = a 1 + a 2 + ⋯ + a n , S_n = a_1 + a_2 + \cdots + a_n, Sn=a1+a2+⋯+an,
注意到 a 1 + a n a_1 + a_n a1+an, a 2 + a n − 1 a_2 + a_{n-1} a2+an−1, a 3 + a n − 2 a_3 + a_{n-2} a3+an−2……都相等,将 S n S_n Sn反写一遍,有:
S n = a n + a n − 1 + ⋯ + a 1 , S_n = a_n + a_{n-1} + \cdots + a_1, Sn=an+an−1+⋯+a1,
两式相加,注意对应项有 n n n个,得到:
2 S n = n ( a 1 + a n ) , 2 S_n = n(a_1 + a_n), 2Sn=n(a1+an),
这也就是:
S n = ( a 1 + a n ) n 2 . S_n = \frac{(a_1 + a_n)n}{2}. Sn=2(a1+an)n.
除了等差数列以外,再也没有数列的任意前 n n n项的图像都是中心对称的了。所以倒序相加法用于其他数列时,基本上只能求出某个特定的和式,而不能求任意 n n n的和。
Example
1. 求和: ∑ k = 1 89 sin 2 k ° . \displaystyle \sum_{k=1}^{89} \sin^2{k\degree}. k=1∑89sin2k°.
Solution
注意到函数(通项) f ( x ) = sin 2 x f(x) = \sin^2{x} f(x)=sin2x关于点 ( 45 ° , 1 / 2 ) (45\degree,1/2) (45°,1/2)中心对称,所以可以使用倒序相加法。
S n = sin 2 1 ° + sin 2 2 ° + ⋯ + sin 2 89 ° , S n = sin 2 89 ° + sin 2 88 ° + ⋯ + sin 2 1 ° ; S_n = \sin^2{1\degree} + \sin^2 {2\degree} + \cdots + \sin^2{89 \degree}, \\ S_n = \sin^2{89\degree} + \sin^2 {88\degree} + \cdots + \sin^2{1 \degree}; \\ Sn=sin21°+sin22°+⋯+sin289°,Sn=sin289°+sin288°+⋯+sin21°;
两式相加,注意到 sin 2 α + sin 2 ( 90 ° − α ) = 1 \sin^2{\alpha} + \sin^2(90\degree - \alpha) = 1 sin2α+sin2(90°−α)=1,所以得到89项1,于是有:
S n = 89 2 . S_n = \frac{89}{2}. Sn=289.
Tip
可以类比定积分:当 f ( x ) f(x) f(x)是关于 ( a , f ( a ) ) (a,f(a)) (a,f(a))的中心对称函数时,若 f ( x ) f(x) f(x)在 [ a − r , a + r ] [a-r,a+r] [a−r,a+r]可积,那么就有:
∫ a − r a + r f ( x ) d x = 2 r f ( a ) . \int_{a-r}^{a+r} f(x) \mathrm{d}x = 2rf(a). ∫a−ra+rf(x)dx=2rf(a).
它们的几何意义都很显然。
实际上,定积分的这个等式,可以用离散求和方法直接推导。
错位相减法
错位相减法,就是将数列的和式错开一位进行相减。这种方法主要用于等比数列和形如 ( k n + b ) q n (kn+b)q^n (kn+b)qn的等差等比数列乘积(一般称为差比数列)。
我们利用这种方法推导等比数列求和公式:
等比数列求和公式推导
设等比数列 { a n } \{ a_n \} {an}的公比为 q q q,前 n n n项和为 S n S_n Sn。利用 a n = a 1 q n − 1 a_n = a_1 q^{n-1} an=a1qn−1,我们可以将 S n S_n Sn写为:
S n = a 1 + a 1 q + a 1 q 2 + ⋯ + a 1 q n − 2 + a 1 q n − 1 ; S_n = a_1 + a_1 q + a_1 q^2 + \cdots + a_1 q^{n-2} + a_1 q^{n-1}; Sn=a1+a1q+a1q2+⋯+a1qn−2+a1qn−1;
我们注意到,将以上公式乘上 q q q后,有很多重复项。在这个思路启发下,我们将上式乘以 q q q,得到
KaTeX parse error: No such environment: align at position 12: \begin{̲a̲l̲i̲g̲n̲}̲ S_n &= a_1…
用 ( 1 ) (1) (1)式减去 ( 2 ) (2) (2)式,得到:
( 1 − q ) S n = a 1 − a 1 q n . (1-q) S_n = a_1 - a_1 q^n. (1−q)Sn=a1−a1qn.
所以有:
S n = a 1 ( 1 − q n ) 1 − q . S_n = \frac{a_1 (1 - q^n)}{1-q}. Sn=1−qa1(1−qn).
这就是等比数列的求和公式。
在已知等比数列求和公式的基础上,我们可以再利用等比数列对差比数列求和:
例题
已知 a n = n ⋅ 2 n − 1 a_n = n \cdot 2^{n-1} an=n⋅2n−1,求前 n n n项和 S n S_n Sn。
Solution
利用错位相减法。
S n = 1 × 2 0 + 2 × 2 1 + ⋯ + n ⋅ 2 n − 1 , (1) S_n = 1 \times 2^0 + 2 \times 2^1 + \cdots + n \cdot 2^{n-1}, \tag{1} Sn=1×20+2×21+⋯+n⋅2n−1,(1)
2 S n = 1 × 2 1 + ⋯ + ( n − 1 ) ⋅ 2 n − 1 + n ⋅ 2 n ; (2) 2S_n = 1 \times 2^1 + \cdots + (n-1) \cdot 2^{n-1} + n \cdot 2^n; \tag{2} 2Sn=1×21+⋯+(n−1)⋅2n−1+n⋅2n;(2)
( 2 ) − ( 1 ) (2) - (1) (2)−(1)得:
S n = − ( 2 0 + 2 1 + ⋯ + 2 n − 1 ) + n ⋅ 2 n ; S_n = - ( 2^0 + 2^1 + \cdots + 2^{n-1} ) + n \cdot 2^n; Sn=−(20+21+⋯+2n−1)+n⋅2n;
利用等比求和公式,将括号内的等比数列求和,整理得到:
S n = ( n − 1 ) ⋅ 2 n + 1 S_n = (n-1) \cdot 2^n + 1 Sn=(n−1)⋅2n+1
Tip
这个数列的求和方法不止一种,下面还会出现多次。
一般地,可以推导,对于差比数列 { ( k n + b ) q n − 1 } \{ (kn+b)q^{n-1} \} {(kn+b)qn−1},利用公式:
A = k q − 1 , B = b − A q − 1 ; A=\frac{k}{q-1}, B=\frac{b-A}{q-1}; A=q−1k,B=q−1b−A;
则数列的前 n n n项和可以表示为
S n = ( A n + B ) q n − B . S_n = (An+B)q^n-B. Sn=(An+B)qn−B.
裂项法
将一个数列的每一项拆成两项之和,并且在求和过程中项与项之间某些部分可以抵消,剩下前面几项和后面几项,或者化为一个简单数列的求和,这种方法就是裂项法。
以最典型的数列为例:
裂项法典例"
设 a n = 1 n ( n + 1 ) a_n = \displaystyle \frac{1}{n(n+1)} an=n(n+1)1,求数列 { a n } \{ a_n \} {an}的前 n n n项和。
Solution
将数列 { a n } \{ a_n \} {an}拆为两项:
a n = 1 n ( n + 1 ) = 1 n − 1 n + 1 , a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}, an=n(n+1)1=n1−n+11,
那么数列 { a n } \{ a_n \} {an}的前 n n n项和为:
S n = a 1 + a 2 + a 3 + ⋯ + a n = 1 − 1 2 + 1 2 − 1 3 + 1 3 − 1 4 + ⋯ + 1 n − 1 n + 1 = 1 − 1 n + 1 . S_n = a_1 + a_2 + a_3 + \cdots + a_n \\ = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \cdots + \frac{1}{n} - \frac{1}{n+1} \\ = 1 - \frac{1}{n+1}. Sn=a1+a2+a3+⋯+an=1−21+21−31+31−41+⋯+n1−n+11=1−n+11.
除了将分式拆开,裂项法还有很多其他技巧,例如:
等比数列求和
这里我们也可以用裂项法对等比数列 a n = a 1 q n − 1 a_n = a_1 q^{n-1} an=a1qn−1求和。
观察到指数函数相邻两项之差可以写为:
a k + 1 − a k = a ⋅ a k − a k = a k ( a − 1 ) , a^{k+1} - a^k = a \cdot a^k - a^k = a^k (a-1), ak+1−ak=a⋅ak−ak=ak(a−1),
所以
a k = a k + 1 − a k a − 1 , a^k = \frac{a^{k+1} - a^k}{a-1}, ak=a−1ak+1−ak,
所以可以将等比数列的通项 a 1 q n − 1 a_1 q^{n-1} a1qn−1裂项为:
a 1 q n − 1 = a 1 q − 1 ( q n − q n − 1 ) , a_1 q^{n-1} = \frac{a_1}{q-1}(q^n - q^{n-1}), a1qn−1=q−1a1(qn−qn−1),
求和得到:
S n = a 1 + a 2 + ⋯ + a n = a 1 q − 1 [ ( q 1 − q 0 ) + ( q 2 − q 1 ) + ⋯ + ( q n − q n − 1 ) ] = a 1 q − 1 ( − q 0 + q n ) = a 1 ( q n − 1 ) q − 1 . S_n = a_1 + a_2 + \cdots + a_n \\ = \frac{a_1}{q-1} [(q^1 - q^0) + (q^2 - q^1) + \cdots + (q^n - q^{n-1})] \\ = \frac{a_1}{q-1} (-q^0 + q^n) \\ = \frac{a_1(q^n - 1)}{q-1}. Sn=a1+a2+⋯+an=q−1a1[(q1−q0)+(q2−q1)+⋯+(qn−qn−1)]=q−1a1(−q0+qn)=q−1a1(qn−1).
这是等比数列求和公式的另一种推导方法。
Example
已知 a n = n ⋅ 2 n − 1 a_n = n \cdot 2^{n-1} an=n⋅2n−1,求前 n n n项和 S n S_n Sn。
分组求和
分组求和的本质,就是利用求和符号的可加性、交换次序,将原数列拆成多个可求和的数列;或者是利用加法结合律,将数列拆成多个子列进行计算(例如分奇偶求和)。
Example
计算差比数列 { n 2 n − 1 } \{ n2^{n-1} \} {n2n−1}的前 n n n项和。
Solution
嗯,差比数列还可以用分组求和法来求…是不是很神奇awa
设前 n n n项和为 S n S_n Sn,那么有:
S n = 1 × 2 0 + 2 × 2 1 + 3 × 2 2 + ⋯ + n ⋅ 2 n − 1 , S_n = 1\times 2^0 + 2\times 2^1 + 3\times 2^2 + \cdots + n\cdot 2^{n-1}, Sn=1×20+2×21+3×22+⋯+n⋅2n−1,
我们把其中的系数展开,写为这样:
S n = 2 0 + ( 2 1 + 2 1 ) + ( 2 2 + 2 2 + 2 2 ) + ⋯ + ( 2 n − 1 + ⋯ + 2 n − 1 ⏟ n 个 ) , (*) S_n = 2^0 + (2^1 + 2^1) + (2^2 + 2^2 + 2^2) + \cdots + (\underbrace{2^{n-1} + \cdots + 2^{n-1}}_{n\text{个}}), \tag{*} Sn=20+(21+21)+(22+22+22)+⋯+(n个 2n−1+⋯+2n−1),(*)
然后我们对数列进行重组,得到:
S n = ( 2 0 + 2 1 + 2 2 + ⋯ + 2 n − 1 ) + ( 2 1 + 2 2 + ⋯ + 2 n − 1 ) + ( 2 2 + ⋯ + 2 n − 1 ) + ⋯ + 2 n − 1 , (**) S_n = (2^0 + 2^1 + 2^2 + \cdots + 2^{n-1}) \\ +(2^1 + 2^2 + \cdots + 2^{n-1} ) \\ +(2^2 + \cdots + 2^{n-1}) \\ +\cdots \\ +2^{n-1}, \tag{**} Sn=(20+21+22+⋯+2n−1)+(21+22+⋯+2n−1)+(22+⋯+2n−1)+⋯+2n−1,(**)
这个过程用一个数表来表示则更加清楚:
( 2 0 2 1 2 2 ⋯ 2 n − 1 2 1 2 2 ⋯ 2 n − 1 2 2 ⋯ 2 n − 1 ⋱ ⋮ 2 n − 1 ) \begin{pmatrix} 2^0 & 2^1 & 2^2 & \cdots & 2^{n-1} \\ & 2^1 & 2^2 & \cdots & 2^{n-1} \\ & & 2^2 & \cdots & 2^{n-1} \\ & & & \ddots & \vdots \\ & & & & 2^{n-1} \\ \end{pmatrix} ⎝⎜⎜⎜⎜⎜⎛202121222222⋯⋯⋯⋱2n−12n−12n−1⋮2n−1⎠⎟⎟⎟⎟⎟⎞
从 ( ∗ ) (*) (∗)到 ( ∗ ∗ ) (**) (∗∗)的过程便可以视为:将上述矩阵从先按列求和,变为了先按行求和。或者,我们也可以用求和符号简记为:
∑ i = 1 n ∑ j = 1 i 2 i − 1 = ∑ j = 1 n ∑ i = j n 2 i − 1 ; (***) \sum_{i=1}^n \sum_{j=1}^i 2^{i-1} = \sum_{j=1}^n \sum_{i=j}^n 2^{i-1}; \tag{***} i=1∑nj=1∑i2i−1=j=1∑ni=j∑n2i−1;(***)
矩阵中每一行的求和都是一个等比数列求和,我们可以算出第 j j j行的和为:
∑ i = j n 2 i − 1 = 2 j − 1 ∑ k = 0 n − j 2 k = 2 n − 2 j − 1 , \sum_{i=j}^n 2^{i-1} = 2^{j-1} \sum_{k=0}^{n-j} 2^k = 2^n -2^{j-1}, i=j∑n2i−1=2j−1k=0∑n−j2k=2n−2j−1,
再对每一行的和求和,得到:
S n = ∑ j = 1 n 2 n − 2 j − 1 = n 2 n − 2 n + 1 = ( n − 1 ) 2 n + 1. S_n = \sum_{j=1}^n 2^n - 2^{j-1} \\ = n2^n - 2^n + 1 \\ = (n-1)2^n+1. Sn=j=1∑n2n−2j−1=n2n−2n+1=(n−1)2n+1.
思考
在等式 ( ∗ ∗ ∗ ) (***) (∗∗∗)中,我们交换了连加号的顺序,为何与此同时连加号的上下限也改变了?这与前面“交换次序”的性质矛盾吗?
与重积分的关系
如果您已经学到二重积分,将连加号的性质对应到微积分中,二次积分可以交换次序:
∫ 0 1 d x ∫ 0 x f ( x , y ) d y = ∫ 0 1 d y ∫ y 1 f ( x , y ) d x . \int_0^1 \mathrm d x \int_0^x f(x,y) \mathrm d y = \int_0^1 \mathrm d y \int_y^1 f(x,y) \mathrm d x. ∫01dx∫0xf(x,y)dy=∫01dy∫y1f(x,y)dx.
交换次序的时候,其上下限为什么这样改变?这种改变与等式 ( ∗ ∗ ∗ ) (***) (∗∗∗)中连加号交换顺序有什么关系?
求和的其他方法
这些方法在高中可能没有直接涉及,但是也是常用的求和方法。
导数法
导数法针对的是某些导函数容易求和的特性,将原函数转化为导函数。
注意到这个的结论:如果 f ( x ) = g ( x ) f(x) = g(x) f(x)=g(x),那么 f ′ ( x ) = g ′ ( x ) f'(x) = g'(x) f′(x)=g′(x)(即使两者形式不同)。
我们依然以差比数列为例:
已知 a n = n ⋅ q n − 1 a_n = n \cdot q^{n-1} an=n⋅qn−1,求前 n n n项和 S n S_n Sn。
Solution
我们可以发现,对于函数 f ( x ) = x n f(x) = x^n f(x)=xn,求导后得到 f ′ ( x ) = n x n − 1 f'(x) = n x^{n-1} f′(x)=nxn−1。也就是说,如果把 x x x看作公比,幂函数(等比数列)求导后会变成差比数列。
那么就有:
( x 1 + x 2 + x 3 + ⋯ + x n ) ′ = 1 + 2 x + 3 x 2 + ⋯ + n x n − 1 ; (x^1 + x^2 + x^3 + \cdots + x^n)' = 1 + 2x + 3x^2 + \cdots + nx^{n-1}; (x1+x2+x3+⋯+xn)′=1+2x+3x2+⋯+nxn−1;
又有:
x 1 + x 2 + ⋯ + x n = x ( 1 − x n ) 1 − x , x^1 + x^2 + \cdots + x^n = \frac{x(1-x^n)}{1-x}, x1+x2+⋯+xn=1−xx(1−xn),
所以有:
1 + 2 x + 3 x 2 + ⋯ + n x n − 1 = [ x ( 1 − x n ) 1 − x ] ′ ; 1 + 2x + 3x^2 + \cdots + nx^{n-1} = \left[ \frac{x(1-x^n)}{1-x} \right]'; 1+2x+3x2+⋯+nxn−1=[1−xx(1−xn)]′;
这样,只需求出右边的导数,再将 x = q x=q x=q代入,就得到了求和结果。
求导得:
[ x ( 1 − x n ) 1 − x ] ′ = [ ( 1 − x n ) + x ⋅ ( − n x n − 1 ) ] ( 1 − x ) − x ( 1 − x n ) ( − 1 ) ( 1 − x ) 2 = 1 − x n − n x n + n x n + 1 ( 1 − x ) 2 = [ n x − 1 − 1 ( x − 1 ) 2 ] x n + 1 ( x − 1 ) 2 . \left[ \frac{x(1-x^n)}{1-x} \right]' \\ = \frac{[(1-x^n)+x\cdot(-nx^{n-1})] (1-x)-x(1-x^n)(-1)}{(1-x)^2} \\ = \frac{1-x^n-nx^n+nx^{n+1}}{(1-x)^2} \\ = \left[ \frac{n}{x-1} - \frac{1}{(x-1)^2} \right] x^n + \frac{1}{(x-1)^2}. [1−xx(1−xn)]′=(1−x)2[(1−xn)+x⋅(−nxn−1)](1−x)−x(1−xn)(−1)=(1−x)21−xn−nxn+nxn+1=[x−1n−(x−1)21]xn+(x−1)21.
所以有:
S n = [ n q − 1 − 1 ( q − 1 ) 2 ] q n + 1 ( q − 1 ) 2 . S_n = \left[ \frac{n}{q-1} - \frac{1}{(q-1)^2} \right] q^n + \frac{1}{(q-1)^2}. Sn=[q−1n−(q−1)21]qn+(q−1)21.
可以看到这与前面所说的 ( A n + B ) q n − B (An+B)q^n-B (An+B)qn−B一致。
一些补充的例题见下:
导数法例题
* 求数列 { ( 3 n + 5 ) ⋅ 3 n } \{ (3n+5) \cdot 3^n \} {(3n+5)⋅3n}的前 n n n项和。
* 已知
∑ k = 1 n sin k x = sin n x 2 sin ( n + 1 ) x 2 sin x 2 . \sum_{k=1}^n \sin{kx} = \frac{\sin{\displaystyle \frac{nx}{2}}\sin{\displaystyle \frac{(n+1)x}{2}}}{\sin{\displaystyle \frac{x}{2}}}. k=1∑nsinkx=sin2xsin2nxsin2(n+1)x.
(该公式的推导见下文“三角函数求和”一节)
求数列 a n = n cos n x a_n = n \cos{nx} an=ncosnx( x ≠ 2 k π , k ∈ Z x \ne 2k\pi, k\in \mathbb{Z} x=2kπ,k∈Z)的前 n n n项和。
Solution
可以发现 ( sin n x ) ′ = n cos n x (\sin{nx})' = n\cos{nx} (sinnx)′=ncosnx,所以有:
cos x + 2 cos 2 x + ⋯ + n cos n x = ( sin x + sin 2 x + ⋯ + sin n x ) ′ . \cos{x} + 2\cos{2x} + \cdots + n\cos{nx} = (\sin{x} + \sin{2x} + \cdots + \sin{nx})'. cosx+2cos2x+⋯+ncosnx=(sinx+sin2x+⋯+sinnx)′.
利用上面的公式,将括号内的部分求和,于是:
∑ k = 1 n k cos k x = ( sin n x 2 sin ( n + 1 ) x 2 sin x 2 ) ′ . \sum_{k=1}^n k\cos{kx} = \left( \frac{\sin{\displaystyle \frac{nx}{2}}\sin{\displaystyle \frac{(n+1)x}{2}}}{\sin{\displaystyle \frac{x}{2}}} \right)'. k=1∑nkcoskx=⎝⎜⎛sin2xsin2nxsin2(n+1)x⎠⎟⎞′.
于是求导就有:
∑ k = 1 n k cos k x = ( n + 1 ) cos n x − n cos ( n + 1 ) x − 1 4 sin 2 x 2 \sum_{k=1}^n k\cos{kx} = \frac{(n+1)\cos{nx} - n\cos{(n+1)x} - 1}{4 \sin^2 \frac{x}{2}} k=1∑nkcoskx=4sin22x(n+1)cosnx−ncos(n+1)x−1
Abel变换
设 { a n } , { b n } \{a_n\},\{b_n\} {an},{bn}是两个数列, { B n } \{B_n\} {Bn}是 { b n } \{b_n\} {bn}的前 n n n项和,那么有:
∑ k = 1 n a k b k = a n B n − ∑ k = 1 n − 1 B k ( a k + 1 − a k ) . \sum_{k=1}^n a_k b_k = a_n B_n - \sum_{k=1}^{n-1} B_k (a_{k+1}-a_k). k=1∑nakbk=anBn−k=1∑n−1Bk(ak+1−ak).
上述定理称为阿贝尔变换(Abel transformation),也称该公式为分部求和公式。
Abel变换的推导或证明
不妨记 B 0 = 0 B_0 = 0 B0=0,于是对任意正整数 n n n,都满足 b n = B n − B n − 1 b_n = B_n - B_{n-1} bn=Bn−Bn−1。
所以
∑ k = 1 n a k b k = ∑ k = 1 n a k ( B k − B k − 1 ) = ∑ k = 1 n ( a k B k − a k B k − 1 ) = ∑ k = 1 n a k B k − ∑ k = 1 n a k B k − 1 = a n B n + ∑ k = 1 n − 1 a k B k − ∑ k = 1 n a k B k − 1 = a n B n + ∑ k = 1 n − 1 a k B k − ∑ k = 2 n a k B k − 1 + a 1 B 0 = a n B n + ∑ k = 1 n − 1 a k B k − ∑ k = 2 n a k B k − 1 = a n B n + ∑ k = 1 n − 1 a k B k − ∑ k = 1 n − 1 a k + 1 B k = a n B n − ∑ k = 1 n − 1 ( a k + 1 − a k ) B k . \sum_{k=1}^n a_k b_k = \sum_{k=1}^n a_k (B_k - B_{k-1}) \\ = \sum_{k=1}^n (a_k B_k - a_k B_{k-1}) \\ = \sum_{k=1}^n a_k B_k - \sum_{k=1}^n a_k B_{k-1} \\ = a_n B_n + \sum_{k=1}^{n-1} a_k B_k - \sum_{k=1}^n a_k B_{k-1} \\ = a_n B_n + \sum_{k=1}^{n-1} a_k B_k - \sum_{k=2}^n a_k B_{k-1} + a_1 B_0 \\ = a_n B_n + \sum_{k=1}^{n-1} a_k B_k - \sum_{k=2}^n a_k B_{k-1} \\ = a_n B_n + \sum_{k=1}^{n-1} a_k B_k - \sum_{k=1}^{n-1} a_{k+1} B_{k} \\ = a_n B_n - \sum_{k=1}^{n-1} (a_{k+1} - a_k) B_{k}. k=1∑nakbk=k=1∑nak(Bk−Bk−1)=k=1∑n(akBk−akBk−1)=k=1∑nakBk−k=1∑nakBk−1=anBn+k=1∑n−1akBk−k=1∑nakBk−1=anBn+k=1∑n−1akBk−k=2∑nakBk−1+a1B0=anBn+k=1∑n−1akBk−k=2∑nakBk−1=anBn+k=1∑n−1akBk−k=1∑n−1ak+1Bk=anBn−k=1∑n−1(ak+1−ak)Bk.
Tips
Abel变换可以结合图形的面积进行记忆:
(该图片由manim生成)
如图所示,小矩形的面积之和
a
1
b
1
+
⋯
+
a
n
b
n
a_1 b_1 + \cdots + a_n b_n
a1b1+⋯+anbn就等于大矩形
a
n
B
n
a_n B_n
anBn减去另一部分小矩形之和
B
1
(
a
2
−
a
1
)
+
⋯
+
B
n
−
1
(
a
n
−
a
n
−
1
)
B_1 (a_2 - a_1) + \cdots + B_{n-1} (a_n - a_{n-1})
B1(a2−a1)+⋯+Bn−1(an−an−1)。
Warning
Abel变换中,第二个连加号的上限是 n − 1 n-1 n−1。也就是说,这里上限改变了,从 n n n变成了 n − 1 n-1 n−1。
应用Abel变换的时候这里很容易出错,请务必细心。
Tips
可以发现这个公式和分部积分公式十分相似。如果记 G ( x ) = ∫ a x g ( t ) d t G(x) = \displaystyle \int_a^x g(t) \mathrm{d}t G(x)=∫axg(t)dt,那么分部积分公式可以写成:
∫ a b f ( x ) g ( x ) d x = f ( b ) G ( b ) − ∫ a b G ( x ) d f ( x ) , \int_a^b f(x)g(x) \mathrm{d}x = f(b)G(b) - \int_a^b G(x)\mathrm{d}f(x), ∫abf(x)g(x)dx=f(b)G(b)−∫abG(x)df(x),
而如果记 Δ a k = a k + 1 − a k \Delta a_k = a_{k+1} - a_k Δak=ak+1−ak,Abel变换可以写成:
∑ k = 1 n a k b k = a n B n − ∑ k = 1 n − 1 B k Δ a k , \sum_{k=1}^n a_k b_k = a_n B_n - \sum_{k=1}^{n-1} B_k \Delta a_k, k=1∑nakbk=anBn−k=1∑n−1BkΔak,
将积分看作连续的求和,而微分看作微小的差分,那么两者是一致的。
实际上,分部积分公式也可以用分部求和公式来证明。
Abel变换和分部积分公式一元,通常可以将函数降幂。
Example
求数列 { n 2 n − 1 } \{n2^{n-1}\} {n2n−1}的前 n n n项和。
Solution
设 T n = ∑ k = 1 n 2 k − 1 T_n = \displaystyle \sum_{k=1}^n 2^{k-1} Tn=k=1∑n2k−1,则有 T n = 2 n − 1 T_n = 2^n - 1 Tn=2n−1。
利用Abel变换得:
∑ k = 1 n k ⋅ 2 k − 1 = n T n − ∑ k = 1 n − 1 T k ⋅ ( k + 1 − k ) = n T n − ∑ k = 1 n − 1 2 k − 1 = n 2 n − n − 2 n − ( n − 1 ) = ( n − 1 ) 2 n + 1. \sum_{k=1}^n k\cdot 2^{k-1}\\ = n T_n - \sum_{k=1}^{n-1} T_k \cdot(k+1-k)\\ = n T_n - \sum_{k=1}^{n-1} 2^k - 1\\ = n 2^n - n - 2^n - (n - 1)\\ = (n-1)2^n+1. \\ k=1∑nk⋅2k−1=nTn−k=1∑n−1Tk⋅(k+1−k)=nTn−k=1∑n−12k−1=n2n−n−2n−(n−1)=(n−1)2n+1.
Tip
求 { n m q n } \{ n^m q^n \} {nmqn}这类数列的和时,都可以使用Abel变换对幂函数 n m n^m nm逐级降阶。
Example
求数列 a n = n 2 a_n = n^2 an=n2的和,也就是计算:
1 2 + 2 2 + ⋯ + n 2 . 1^2 + 2^2 + \cdots + n^2. 12+22+⋯+n2.
Solution
我们要求数列 { n 2 } \{n^2\} {n2}的平方和,可以将它看作两项的乘积 { n ⋅ n } \{n \cdot n\} {n⋅n},然后利用Abel变换:
∑ k = 1 n k ⋅ k = n ⋅ n ( n + 1 ) 2 − ∑ k = 1 n − 1 k ( k + 1 ) 2 ( k + 1 − k ) = n ⋅ n ( n + 1 ) 2 − ∑ k = 1 n − 1 k ( k + 1 ) 2 = n 2 ( n + 1 ) 2 − ∑ k = 1 n − 1 k 2 2 − ∑ k = 1 n − 1 k 2 ; \sum_{k=1}^n k \cdot k =n \cdot \frac{n(n+1)}{2} - \sum_{k=1}^{n-1} \frac{k(k+1)}{2}(k+1-k) \\ =n \cdot \frac{n(n+1)}{2} - \sum_{k=1}^{n-1} \frac{k(k+1)}{2} \\ =\frac{n^2(n+1)}{2} - \sum_{k=1}^{n-1} \frac{k^2}{2} - \sum_{k=1}^{n-1} \frac{k}{2}; \\ k=1∑nk⋅k=n⋅2n(n+1)−k=1∑n−12k(k+1)(k+1−k)=n⋅2n(n+1)−k=1∑n−12k(k+1)=2n2(n+1)−k=1∑n−12k2−k=1∑n−12k;
到这里以后,我们注意到方程的两边都有 ∑ k 2 \sum k^2 ∑k2一项,我们可以想办法把右边的一项移到等号左边。两者上限不同,但是给方程右边再补上 n 2 / 2 n^2/2 n2/2一项,就可以把上限凑成一样的了。我们在等号右边加上 n 2 / 2 n^2/2 n2/2再减去 n 2 / 2 n^2/2 n2/2,得到:
∑ k = 1 n k ⋅ k = n 2 ( n + 1 ) 2 − ∑ k = 1 n − 1 k 2 2 − n 2 2 − ∑ k = 1 n − 1 k 2 + n 2 2 = n 2 ( n + 1 ) 2 − ( ∑ k = 1 n − 1 k 2 2 + n 2 2 ) − ∑ k = 1 n − 1 k 2 + n 2 2 = n 2 ( n + 1 ) 2 − ∑ k = 1 n k 2 2 − ∑ k = 1 n − 1 k 2 + n 2 2 \sum_{k=1}^n k \cdot k = \frac{n^2(n+1)}{2} - \sum_{k=1}^{n-1} \frac{k^2}{2} - \frac{n^2}{2} - \sum_{k=1}^{n-1} \frac{k}{2} + \frac{n^2}{2} \\ = \frac{n^2(n+1)}{2} - \left(\sum_{k=1}^{n-1} \frac{k^2}{2} + \frac{n^2}{2}\right) - \sum_{k=1}^{n-1} \frac{k}{2} + \frac{n^2}{2} \\ = \frac{n^2(n+1)}{2} - \sum_{k=1}^{n} \frac{k^2}{2} - \sum_{k=1}^{n-1} \frac{k}{2} + \frac{n^2}{2} \\ k=1∑nk⋅k=2n2(n+1)−k=1∑n−12k2−2n2−k=1∑n−12k+2n2=2n2(n+1)−(k=1∑n−12k2+2n2)−k=1∑n−12k+2n2=2n2(n+1)−k=1∑n2k2−k=1∑n−12k+2n2
这样上限一样了,于是把 ∑ k 2 / 2 \sum k^2/2 ∑k2/2移到右边得到:
3 2 ∑ k = 1 n k 2 = n 2 ( n + 1 ) 2 − ∑ k = 1 n − 1 k 2 + n 2 2 ; \frac{3}{2} \sum_{k=1}^n k^2 = \frac{n^2(n+1)}{2} - \sum_{k=1}^{n-1} \frac{k}{2} + \frac{n^2}{2}; 23k=1∑nk2=2n2(n+1)−k=1∑n−12k+2n2;
将右边通分、整理就得到了:
3 2 ∑ k = 1 n k 2 = n ( n + 1 ) ( 2 n + 1 ) 4 ; \frac{3}{2} \sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{4}; 23k=1∑nk2=4n(n+1)(2n+1);
所以,这个数列的和
∑ k = 1 n k 2 = n ( n + 1 ) ( 2 n + 1 ) 6 . \sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}. k=1∑nk2=6n(n+1)(2n+1).
以上就是平方和公式的一种推导方法。
Tip
这种求和方法类似于分部积分法中的函数再现。
利用Abel变换求和的过程中如果出现再现的函数,只要它们在等号左右两边的系数不同,并且可以凑成相同的上限,就可以移到等号同一侧。
类似地,求 1 m + 2 m + ⋯ + n m 1^m+2^m+\cdots+n^m 1m+2m+⋯+nm的时候,都可以用这种方法进行降次。
特殊求和数列
三角函数求和
三角函数的典型求和式就是:
∑ k = 1 n sin k x = sin n x 2 sin ( n + 1 ) x 2 sin x 2 ; \sum_{k=1}^n \sin{kx} = \frac{\sin{\displaystyle \frac{nx}{2}}\sin{\displaystyle \frac{(n+1)x}{2}}}{\sin{\displaystyle \frac{x}{2}}}; k=1∑nsinkx=sin2xsin2nxsin2(n+1)x;
∑
k
=
1
n
cos
k
x
=
sin
(
n
+
1
)
x
2
cos
n
x
2
sin
x
2
.
\sum_{k=1}^n \cos{kx} = \frac{\sin{\displaystyle\frac{(n+1)x}{2}} \cos{\displaystyle\frac{nx}{2}}}{\sin{\displaystyle\frac{x}{2}} }.
k=1∑ncoskx=sin2xsin2(n+1)xcos2nx.
求和式的推导
这种推导方法可以看作是一种另类的裂项法。
我们先推导第一个,设
S n = sin x + sin 2 x + ⋯ + sin n x , S_n = \sin{x} + \sin{2x} + \cdots + \sin{nx}, Sn=sinx+sin2x+⋯+sinnx,
和式乘上 sin ( x / 2 ) \sin(x/2) sin(x/2),利用积化和差公式
sin x sin y = 1 2 [ cos ( x − y ) − cos ( x + y ) ] \sin{x}\sin{y} = \frac{1}{2} [\cos{(x-y)} - \cos{(x+y)}] sinxsiny=21[cos(x−y)−cos(x+y)]
可以将该式凑出可以裂项的部分:
sin x 2 ⋅ S n = sin x 2 ( sin x + sin 2 x + ⋯ + sin n x ) = sin x 2 sin x + sin x 2 sin 2 x + ⋯ + sin x 2 sin n x = 1 2 [ cos ( x 2 − x ) − cos ( x 2 + x ) ] + 1 2 [ cos ( x 2 − 2 x ) − cos ( x 2 + 2 x ) ] + ⋯ + 1 2 [ cos ( x 2 − n x ) − cos ( x 2 + n x ) ] = 1 2 [ cos ( − x 2 ) − cos ( 3 x 2 ) + cos ( − 3 x 2 ) − cos ( 5 x 2 ) + ⋯ + cos ( − 2 n − 1 2 x ) − cos ( 2 n + 1 2 x ) ] = 1 2 [ cos ( x 2 ) − cos ( 3 x 2 ) + cos ( 3 x 2 ) − cos ( 5 x 2 ) + ⋯ + cos ( 2 n − 1 2 x ) − cos ( 2 n + 1 2 x ) ] = 1 2 [ cos ( x 2 ) − cos ( 2 n + 1 2 x ) ] \sin{\frac{x}{2}} \cdot S_n \\ = \sin{\frac{x}{2}} (\sin{x} + \sin{2x} + \cdots + \sin{nx})\\ =\sin{\frac{x}{2}}\sin{x} + \sin{\frac{x}{2}}\sin{2x} + \cdots + \sin{\frac{x}{2}\sin{nx}} \\ = \frac{1}{2}\left[ \cos{\left(\frac{x}{2}-x\right)}-\cos{\left(\frac{x}{2}+x\right)} \right] + \frac{1}{2}\left[ \cos{\left(\frac{x}{2}-2x\right)}-\cos{\left(\frac{x}{2}+2x\right)} \right] + \cdots + \frac{1}{2}\left[ \cos{\left(\frac{x}{2}-nx\right)}-\cos{\left(\frac{x}{2}+nx\right)} \right] \\ = \frac{1}{2} \left[ \cos{\left(-\frac{x}{2}\right)} - \cos{\left(\frac{3x}{2}\right)} + \cos{\left(-\frac{3x}{2}\right)} - \cos{\left(\frac{5x}{2}\right)} + \cdots + \cos{\left(-\frac{2n-1}{2}x\right)} - \cos{\left(\frac{2n+1}{2}x\right)} \right] \\ =\frac{1}{2} \left[ \cos{\left(\frac{x}{2}\right)} - \cos{\left(\frac{3x}{2}\right)} + \cos{\left(\frac{3x}{2}\right)} - \cos{\left(\frac{5x}{2}\right)} + \cdots + \cos{\left(\frac{2n-1}{2}x\right)} - \cos{\left(\frac{2n+1}{2}x\right)} \right] \\ = \frac{1}{2} \left[ \cos{\left(\frac{x}{2}\right)}- \cos{\left(\frac{2n+1}{2}x\right)} \right] sin2x⋅Sn=sin2x(sinx+sin2x+⋯+sinnx)=sin2xsinx+sin2xsin2x+⋯+sin2xsinnx=21[cos(2x−x)−cos(2x+x)]+21[cos(2x−2x)−cos(2x+2x)]+⋯+21[cos(2x−nx)−cos(2x+nx)]=21[cos(−2x)−cos(23x)+cos(−23x)−cos(25x)+⋯+cos(−22n−1x)−cos(22n+1x)]=21[cos(2x)−cos(23x)+cos(23x)−cos(25x)+⋯+cos(22n−1x)−cos(22n+1x)]=21[cos(2x)−cos(22n+1x)]
再利用和差化积公式
cos x − cos y = − 2 sin x + y 2 sin x − y 2 \cos{x} - \cos{y} = -2\sin{\frac{x+y}{2}}\sin{\frac{x-y}{2}} cosx−cosy=−2sin2x+ysin2x−y
将等式右边继续变形:
sin x 2 ⋅ S n = 1 2 [ cos ( x 2 ) − cos ( 2 n + 1 2 x ) ] = − sin x 2 + 2 n + 1 2 x 2 sin x 2 − 2 n + 1 2 x 2 = − sin n + 1 2 x sin − n x 2 = sin n + 1 2 x sin n x 2 \sin{\frac{x}{2}} \cdot S_n \\ = \frac{1}{2} \left[ \cos{\left(\frac{x}{2}\right)}- \cos{\left(\frac{2n+1}{2}x\right)} \right] \\ = -\sin{\frac{\frac{x}{2} + \frac{2n+1}{2}x}{2}}\sin{\frac{\frac{x}{2} - \frac{2n+1}{2}x}{2}} \\ = -\sin{\frac{n+1}{2}x}\sin{-\frac{nx}{2}} \\ = \sin{\frac{n+1}{2}x}\sin{\frac{nx}{2}} sin2x⋅Sn=21[cos(2x)−cos(22n+1x)]=−sin22x+22n+1xsin22x−22n+1x=−sin2n+1xsin−2nx=sin2n+1xsin2nx
所以最后得到:
∑ k = 1 n sin k x = sin n x 2 sin ( n + 1 ) x 2 sin x 2 . \sum_{k=1}^n \sin{kx} = \frac{\sin{\displaystyle \frac{nx}{2}}\sin{\displaystyle \frac{(n+1)x}{2}}}{\sin{\displaystyle \frac{x}{2}}}. k=1∑nsinkx=sin2xsin2nxsin2(n+1)x.
Exercise
类比上述方法,推导第二个等式。
提示:
依然给每一项乘上 sin ( x / 2 ) \sin{(x/2)} sin(x/2),然后利用和差化积公式
sin x cos y = 1 2 [ sin ( x + y ) + sin ( x − y ) ] . \sin{x}\cos{y} = \frac{1}{2}[\sin{(x+y)} + \sin{(x-y)}]. sinxcosy=21[sin(x+y)+sin(x−y)].
利用复数进行推导
根据Euler公式 e i x = cos x + i sin x \mathrm e^{\mathrm i x} = \cos{x} + \mathrm i\sin{x} eix=cosx+isinx,指数函数和三角函数可以相互转换。因此我们也可以先求指数函数的和,再利用复数求三角函数。
设
E n = e i x + e 2 i x + ⋯ + e n i x , E_n = {\mathrm e}^{\mathrm i x} + {\mathrm e}^{2\mathrm i x} + \cdots + {\mathrm e}^{n\mathrm i x}, En=eix+e2ix+⋯+enix,
并设
S n = ∑ k = 1 n sin k x , C n = ∑ k = 1 n cos k x ; S_n = \sum_{k=1}^n \sin{kx}, C_n = \sum_{k=1}^n \cos{kx}; Sn=k=1∑nsinkx,Cn=k=1∑ncoskx;
根据等比数列求和公式,容易求得
E n = e i x + ( e i x ) 2 + ⋯ + ( e i x ) n = 1 − e ( n + 1 ) x i 1 − e x i = 1 − cos ( n + 1 ) x + i sin ( n + 1 ) x 1 − cos x + i sin x , E_n = {\mathrm e}^{\mathrm i x} + ({\mathrm e}^{\mathrm i x})^2 + \cdots + ({\mathrm e}^{\mathrm i x})^n \\ = \frac{1 - {\mathrm e}^{(n+1)x\mathrm i}}{1 - {\mathrm e}^{x\mathrm i}} \\ = \frac{1 - \cos{(n+1)x} + \mathrm i \sin{(n+1)x}}{1 - \cos{x} + \mathrm i\sin{x} }, En=eix+(eix)2+⋯+(eix)n=1−exi1−e(n+1)xi=1−cosx+isinx1−cos(n+1)x+isin(n+1)x,
化简得:
E n = csc x 2 sin ( n + 1 ) x 2 ( cos n x 2 + i sin n x 2 ) . E_n = \csc{\frac{x}{2}} \sin{\frac{(n+1)x}{2}} \left( \cos{\frac{nx}{2}} + \mathrm i \sin{\frac{nx}{2}} \right). En=csc2xsin2(n+1)x(cos2nx+isin2nx).
而另一方面,由Euler公式,有:
E n = e i x + e 2 i x + ⋯ + e n i x = cos x + i sin x + cos 2 x + i sin 2 x + ⋯ + cos n x + i sin n x = ( cos x + cos 2 x + ⋯ + cos n x ) + i ( sin x + sin 2 x + ⋯ + sin n x ) = C n + i S n , E_n = {\mathrm e}^{\mathrm i x} + {\mathrm e}^{2\mathrm i x} + \cdots + {\mathrm e}^{n\mathrm i x} \\ = \cos{x} + \mathrm i \sin{x} + \cos{2x} + \mathrm i \sin{2x} + \cdots + \cos{nx} + \mathrm i\sin{nx} \\ = (\cos{x} + \cos{2x} + \cdots + \cos{nx}) + \mathrm i (\sin{x} + \sin{2x} + \cdots + \sin{nx}) \\ = C_n + \mathrm i S_n, En=eix+e2ix+⋯+enix=cosx+isinx+cos2x+isin2x+⋯+cosnx+isinnx=(cosx+cos2x+⋯+cosnx)+i(sinx+sin2x+⋯+sinnx)=Cn+iSn,
也就有:
C n + i S n = csc x 2 sin ( n + 1 ) x 2 ( cos n x 2 + i sin n x 2 ) C_n + \mathrm i S_n = \csc{\frac{x}{2}} \sin{\frac{(n+1)x}{2}} \left( \cos{\frac{nx}{2}} + \mathrm i \sin{\frac{nx}{2}} \right) Cn+iSn=csc2xsin2(n+1)x(cos2nx+isin2nx)
所以 C n C_n Cn和 S n S_n Sn分别对应了指数函数的实部和虚部。对上式取实部得:
C n = csc x 2 sin ( n + 1 ) x 2 cos n x 2 ; (1) C_n = \csc{\frac{x}{2}} \sin{\frac{(n+1)x}{2}} \cos{\frac{nx}{2}}; \tag{1} Cn=csc2xsin2(n+1)xcos2nx;(1)
取虚部得
S n = csc x 2 sin ( n + 1 ) x 2 sin n x 2 ; (2) S_n = \csc{\frac{x}{2}} \sin{\frac{(n+1)x}{2}} \sin{\frac{nx}{2}}; \tag{2} Sn=csc2xsin2(n+1)xsin2nx;(2)
方程 ( 1 ) , ( 2 ) (1),(2) (1),(2)就是三角函数的求和公式。
文章到这里就暂时结束啦,想看看其他内容可以到我们的网站Easymath-wiki看看其他内容,各种数学干货、数学知识分享正在不断更新!也请大家到GitHub上给我们按个star鸭