公司层面气候变化暴露指数

一、数据简介

     Firm-level Climate Change Exposure

  • Contributors: Zacharias Sautner, Laurence van Lent, Grigory Vilkov, Ruishen Zhang

  • Date created: 2020-06-29 10:50 PM | Last Updated: 2021-10-08 05:02 PM

  • Identifier: DOI 10.17605/OSF.IO/FD6JQ

  • Description: We introduce a method that identifies firm-level climate change exposures from conversation in earnings conference calls of more than 10,000 firms from 34 countries between 2002 and 2020. The method captures exposures related to opportunity, physical, and regulatory shocks associated with climate change. The exposure measures exhibit cross-sectional and time-series variations which align with reasonable priors, and are better in capturing firm-level variation than carbon intensities or ratings. The exposure measures relate to economic factors that prior work has identified as important correlates of climate change exposure (e.g., public climate attention). Exposure to regulatory shocks negatively correlates with firm valuations, but only in recent years.

  • Background: For an extensive description of this data, please read the data and methodology sections of the paper cited below. For convenience, here is a brief description.The exposure measures count the frequency with which certain climate change bigrams occur in the transcript, scaled by the total number of bigrams in the transcript. We construe these measures as indicating the occurrence of climate change events or shocks at the firm. Our method also allows us to construct measures of the first and second moment associated with these shocks. In other words, whether the events represent (in expectation) good or bad news to the firm and whether the shocks are uncertain. For the first moment, we construct "sentiment'' measures, which count the relative frequency of climate change bigrams that occur in the vicinity of positive and negative tone words (Loughran and McDonald2011). For the second moment, or risk measures, we count the relative frequency of climate change bigrams mentioned in the same sentence as the words "risk" or "uncertainty" (or their synonyms). Following prior practice in Hassan et al. (2019), we interpret these sentiment and risk measures as components of the exposure measures.

  • Updates 2021-05-14: We have updated our data to 2020Q4.

  • Updates 2021-04-03: Last update missed 2019 Q3 and Q4. We added the data of these two quarters in the latest version.

  • Updates 2021-01-19: We have updated our data to 2020Q3.

     Please cite the following study when using this Climate Change Exposure/Risk/Sentiment data:

  • Sautner, Z., L. van Lent, G. Vilkov, and R. Zhang, Firm-level Climate Change Exposure, 2020. Available at SSRN: https://ssrn.com/abstract=3642508

     The data is publicly available and free to use, provided its source is acknowledged as follows:

  • Sautner, Z., L. van Lent, G. Vilkov, and R. Zhang, 2020. ”Data for ‘Firm-level Climate Change Exposure’”. https://doi.org/10.17605/OSF.IO/FD6JQ and both data and the associated paper are cited in any work that uses these resources.

     经上海财经大学会计学院张瑞申教授授权,CnOpenData建立了该数据的展示区及数据索引,便于学者浏览。

     数据下载请点击Firm-level Climate Change Exposure,或在本页页末直接下载。

二、时间区间

2001-2020

三、字段展示

四、样本数据

firm-year-level  Climate Change Exposure

isindateQcc_expocc_riskcc_poscc_negcc_sentiop_cc_expoop_cc_riskop_cc_posop_cc_negop_cc_sentirg_cc_exporg_cc_riskrg_cc_posrg_cc_negrg_cc_sentiph_cc_expoph_cc_riskph_cc_posph_cc_negph_cc_sentigvkeyheadquarterscountryhqcountrycode
AEA0020010132016q40.0003215430000000000000000000284153United Arab EmiratesAE
AEA0020010132017q10.000738280000000000000000000284153United Arab EmiratesAE
AEA0020010132017q200000000000000000000284153United Arab EmiratesAE
AEA0020010132017q300000000000000000000284153United Arab EmiratesAE
AEA0020010132017q40.0005165290000000000000000000284153United Arab EmiratesAE
AEA0020010132018q100000000000000000000284153United Arab EmiratesAE
AEA0020010132018q200000000000000000000284153United Arab EmiratesAE
AEA0020010132018q300000000000000000000284153United Arab EmiratesAE
AEA0020010132018q400000000000000000000284153United Arab EmiratesAE
AEA0020010132019q100000000000000000000284153United Arab EmiratesAE

firm-quarter-level  Climate Change Exposure

isinyearcc_expocc_riskcc_poscc_negcc_sentiop_cc_expoop_cc_riskop_cc_posop_cc_negop_cc_sentirg_cc_exporg_cc_riskrg_cc_posrg_cc_negrg_cc_sentiph_cc_expoph_cc_riskph_cc_posph_cc_negph_cc_sentigvkeyheadquarterscountryhqcountrycode
AEA00200101320160.0003215430000000000000000000284153United Arab EmiratesAE
AEA00200101320170.0003137020000000000000000000284153United Arab EmiratesAE
AEA002001013201800000000000000000000284153United Arab EmiratesAE
AEA002001013201900000000000000000000284153United Arab EmiratesAE
AEA00200101320200.00108519600.000688055-0.000714754-2.67E-050.0001323800-0.00013238-0.000132380.00019179100.000191791-0.000191791000000284153United Arab EmiratesAE
AEA002301017201100000000000000000000274887United Arab EmiratesAE
AEA00240101520090.00231000400.000591299-0.0005826128.69E-060.0007293250.0001467140.000435898-0.0002913060.0001445920.00015105700.00015105700.0001510570.00015105700.00015105700.000151057279336United Arab EmiratesAE
AEA00240101520100.0018459900-0.000510032-0.0005100320.000544780000000000.00018910700-0.000189107-0.000189107279336United Arab EmiratesAE
AEA00240101520110.00180556700.000394011-0.000625029-0.0002310180.00068150200.00019700600.000197006000000.00026652500-0.000266525-0.000266525279336United Arab EmiratesAE
AEA00240101520120.0014718920.000414250-0.000528821-0.0005288210.0002644100000000000000279336United Arab EmiratesAE

五、参考文献

  • Sautner, Zacharias and van Lent, Laurence and Vilkov, Grigory and Zhang, Ruishen, Firm-level Climate Change Exposure (May 10, 2021). European Corporate Governance Institute–Finance Working Paper No. 686/2020, Available at SSRN: https://ssrn.com/abstract=3642508 or http://dx.doi.org/10.2139/ssrn.3642508

六、数据更新频率

不定期更新(CnOpenData Firm-level Climate Change Exposure

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值