Firm-Level Climate Change Exposure

Firm-Level Climate Change Exposure – 论文阅读

Abstract

  1. 我们开发了一种方法,该方法能够识别收益电话会议参与者对公司气候变化暴露的关注度。此方法采用了一种机器学习关键词发现算法,并捕捉与气候变化相关的机遇、物理和监管冲击所导致的暴露。这些衡量指标适用于2002年至2020年间来自34个国家的10,000多家公司。
  2. 我们证明,这些衡量指标在预测与净零排放经济转型相关的重要实际结果方面是有用的,特别是颠覆性绿色技术中的就业创造和绿色专利活动,并且它们包含的信息已经在期权和股票市场中被定价。

Introduction

Question

气候变化将深刻影响商业运作的方式。科学家们已经开发出复杂的模型来估算温室气体排放对全球气候的影响。然而,关于气候变化如何影响就业、创新和资本市场中的风险分担的证据却很少。估计这些影响的一个关键挑战在于,测量单个公司受气候变化的影响是困难的(Giglio, Kelly, 和 Stroebel (2021)),因为这些效应是多方面的,并源自多个源头。例如,虽然物理上的气候变化和为应对全球变暖而实施的法规可能给一些公司带来成本,但气候变化也可能为其他公司提供机会,比如那些在可再生能源、电动汽车或能源储存领域运营的公司。

Contribution

  • 在本文中,我们通过使用收益电话会议的记录来构建随时间变化的衡量指标,以显示全球范围内的电话参与者如何看待公司在不同方面的气候变化暴露,从而在这方面取得进展。
    • 为了构建气候变化暴露的衡量指标,我们基于最近的研究工作,该研究利用季度收益电话会议作为识别公司各种风险和机遇的来源(Hassan 等人 (2019, 2021, 2023a, 2023b),Jamilov, Rey, 和 Tahoun (2021))。这些研究使用收益电话会议期间与某一特定主题相关的对话比例来捕捉公司对该主题的暴露。我们遵循这些论文定义“暴露”为一个话题在会议记录中所占对话的比例。
  • 我们的结果揭示了所有衡量指标内部行业中存在相当大的差异,这表明不同公司在气候变化面前受益或受损的程度不一。一个明显的例子是TotalEnergies与ExxonMobil之间的比较。尽管TotalEnergies和ExxonMobil在监管暴露方面相似,但TotalEnergies在测量的机会方面得分高出七倍多。这种对前景感知上的分歧与这些公司在其商业模式中接受可再生能源和净零转型的程度上的不同相一致(Pickl (2019))。
  • 我们发现气候暴露与碳排放量及Engle等人(2020,EGKLS)编制的公众气候变化关注指数之间存在正相关关系。这种与排放量的关联来自于监管和机会暴露(因为物理暴露与排放无关)。公众关注度的影响也来源于EGKLS指数与机会和监管暴露衡量指标之间的正相关关系。
  • 我们将这些衡量指标应用于我们的样本公司,以阐明气候变化暴露的性质。或许令人惊讶的是,虽然气候变化通常被视为与全球物理气候变化相关的总体风险因素,但它在行业内产生的影响远非均匀。即使在同一行业内,气候变化的影响在公司之间也是异质的。这一结果与许多影响公司适应绿色经济能力的因素具有较大的公司层面成分的观点相一致(例如,管理技能、融资约束)。
  • 我们将它应用于四个实际和金融市场结果。在前两个应用中,我们证明了气候变化暴露能够预测绿色技术招聘和绿色专利,这两者都是低碳转型的关键驱动力。具有较高测量气候变化暴露的公司在随后一年中在颠覆性绿色技术领域创造了更多的就业机会:气候变化暴露的标准差增加与下一年绿色就业岗位增加109%有关联。这一总体效应源自那些表现出更高测量机会和监管暴露的公司更多的就业创造。
  • 对于绿色技术岗位创造的结果同样适用于绿色专利。气候变化暴露的标准差增加与下一年绿色专利数量增加72%有关联。再一次地,这一发现来自于那些拥有更高机会和监管暴露的公司。高暴露公司不仅仅是在各领域招募更多员工;它们也并非普遍更具有创新性。实际上,具有更高暴露的公司减少了非绿色技术领域的招聘,并生成了更少的非绿色专利。
  • 剩下的两个应用将气候变化暴露与金融市场结果联系起来。我们首先展示了测量的暴露与期权市场中的风险和风险溢价之间的关系。对于那些具有较高总体暴露的股票期权,尾部区域相对更昂贵。对于具有较高机会暴露的公司而言,效果类似,投资者愿意支付一个(方差风险)溢价。相比之下,对于具有较高监管暴露的公司,效果较小但仍具统计显著性。这证实了一些具有较高监管暴露的公司面临下行风险和上行潜力(由于其创新活动)的观点。
  • 我们还记录了反映气候变化暴露总水平创新的一个条件定价因子。具有更高该因子贝塔值的公司面临着与未来气候变化领域发展相关的更高不确定性,因此获得更高的回报。我们的估计采用了Gagliardini, Ossola, 和 Scaillet (2016)的方法,这种方法在横截面相对于时间序列较大时表现良好。我们得到了该因子正的平均条件风险溢价,并且更重要的是,发现了风险溢价的时间序列变异性很大。

Related Work

我们论文最密切相关的是Li等人(2021,LSTY)的同期工作,他们也使用收益电话会议来识别气候风险。

  • 我们在方法、重点和样本方面与他们的工作有所不同。具体来说,LSTY使用预指定的训练库来识别气候风险词汇,我们认为这种方法不太可能揭示收益电话会议中讨论气候变化的确切语言(参见Varini等人(2020))。
  • 此外,虽然LSTY侧重于美国公司中的物理和监管风险,我们则基于全球样本提供更全面的分析,并包括气候变化带来的正面机会效应。

根据对10K报告的文本分析,Baz等人(2022)记录了具有更多监管气候变化暴露的公司在2016年特朗普当选后经历了正向的股票回报效应。

自我们数据公开以来,我们的衡量指标已经与一系列实际和金融结果相关联。“样本外”证据令人放心,因为它表明这些指标捕捉到了公司之间的有意义差异,而不仅仅是噪音。

  • von Schickfus(2021)展示了当总体测量和机会测量更高时,更多的绿色专利活动;
  • Li, Lin 和 Lin(2022)显示总体测量预测整体创新减少。
  • 我们的总体测量与现金持有量正相关(Heo(2021)),并且解释了美国公司在EPA 2010年温室气体报告计划之后排放量下降的程度(Tomar(2023))。
  • 我们的物理测量与8K文件中的物理风险披露有关(Gostlow(2021)),机会测量与公司的碳风险管理相关(Duong等人(2021))。
  • 在金融方面,我们的物理测量与《巴黎协定》后的较低杠杆率相关(Ginglinger 和 Moreau(2022))。
  • Mueller 和 Sfrappini(2022)显示,在监管气候风险变得显著之后,银行贷款在美国倾向于高监管暴露的公司,而在欧盟则相反。
  • 我们在Sautner等人(2022)中提供了额外的证据,表明我们的衡量指标在股票市场中被定价,而Kölbel等人(2022)显示总体测量在《巴黎协定》后与信用违约互换(CDS)利差负相关。
  • Di Giuli等人(2022)发现,投资者在经历高温后投票支持气候提案的倾向在具有更多总体气候变化暴露的公司中更高。Heath等人(2022)发现,社会责任投资(SRI)基金较少投资于具有较高总体气候变化暴露的公司。我们的关键词词典被Hail, Kim, 和 Zhang(2021)使用。

Data

  1. 收益电话会议数据,我们使用从Refinitiv Eikon数据库收集的,2002年至2020年期间全部的英文记录。排除了有150个或更少公司年度观察值的国家,并删除了SIC代码9900至9999(“无法分类”)的公司。最终样本包括来自34个国家的10,673家总部公司的86,152个公司年度观察值。
  2. 碳排放数据,来自S&P Global Trucost的碳排放数据(总排放量),这些数据包括公司报告的排放量和Trucost估算的排放量。
  3. 公众对气候变化的关注数据,我们借用了一个由EGKLS开发的指数,以捕捉公众对气候变化关注的时间序列变化。为了量化气候新闻报道的强度,EGKLS将《华尔街日报》的新闻内容与关于气候变化的权威文本语料库进行比较。由此产生的衡量指标反映了每天《华尔街日报》中关于气候变化主题的文章所占比例(我们使用年度平均值)
  4. 绿色技术工作岗位数据。与重要绿色技术相关的工作数据来自Bloom等人(2021)。这些作者使用文本分析识别了过去几十年中的29种颠覆性技术,其中四种广泛与气候变化相关(“混合动力电动汽车”,“锂电池”,“太阳能”,和“水力压裂”)。我们从Bloom等人(2021)获得的数据包含了与这四种技术相关的公司在线职位发布。(累计新绿色技术工作岗位最多的前五家公司包括特斯拉、Sunrun、First Solar、Sunpower Corp和Viviant Solar。)
  5. 绿色专利数据。我们从Google Patents (GP)数据库收集了专利数据。绿色专利数量(#Green Patents)是指一个公司年度内提交的绿色专利数量。如果我们在GP中无法识别出某个公司年度内的绿色专利,则假设该年度未发生绿色专利申请。(在绿色专利活动非零条件下,平均(中位数)绿色专利数量为8.5(2)。样本期间内,卡特彼勒公司(Caterpillar)是最大的绿色专利生产者,共提交了1,364项绿色专利。我们也使用了总非绿色专利的数量(#Nongreen Patents)。)
  6. 期权市场中的风险和风险溢价数据。期权隐含变量的数据来自Ivy DB OptionMetrics的波动率曲面文件。在这些测试中,我们专注于有流动性期权数据的S&P500公司。我们通过OptionMetrics的历史CUSIP链接来匹配期权数据。我们构建了六个衡量指标:隐含方差(IVar)、隐含偏度(ISkew)、隐含峰度(IKurt)、隐含波动率斜率(SlopeD和SlopeU),以及方差风险溢价(VRP)。
  7. 股票市场中的风险溢价数据。我们用于检验气候变化暴露因子的测试使用了Ken French数据库中的标准因子月度数据。期限利差和违约利差数据来自圣路易斯联邦储备银行的FRED库。期限利差是10年期和3个月期国债恒定到期收益率之间的差异(变量T10Y3MM)。违约利差是Baa级和Aaa级公司债券收益率之间的差异(BAA10YM和AAA10YM)。账面市值比率数据(按照Fama和French(2008)定义的日志术语)来自Compustat北美。
  8. 财务报表数据。公司财务变量的数据(如总资产、债务、资本支出、研发或现金持有量)来自Compustat北美和Compustat全球。

Firm-Level Exposure to Climate Change

本文改进的气候变化双词组发现算法,它的目标是从文本中量化公司对气候变化的暴露。通过从公司电话会议记录(earnings calls)中提取与气候变化相关的语言,算法克服了多个挑战,并能识别新的、细分的气候变化相关双词组。

  • 特定领域的语言:气候变化讨论的词汇不断变化,这些词汇随着相关政策、技术突破、法规等的变化而变化,因此预定义的词库可能会遗漏一些新的、重要的术语。

  • 多重话题的交织:公司电话会议中,气候变化话题往往与其他话题交织,如监管政策、税收优惠、技术创新和公司业绩等。这使得判断讨论是否真正涉及气候变化变得更加模糊。

  • 词汇的快速变化:讨论气候变化的词汇也在不断演变,因此传统的基于固定词库的方法很难应对这种快速变化。

  • 该算法不需要一个全面的“气候变化”训练库,而是只需要一小部分“初始”双词组。这些双词组通常是一些基础且通用的气候变化术语(如“气候变化”、“全球变暖”、“碳排放”等)。这些初始双词组有助于算法在公司电话会议记录中识别出那些直接讨论气候变化的句子。

在这里插入图片描述

Climate Change Bigrams Search Algorithm

气候变化双词组搜索算法是一种基于机器学习的方法,旨在从公司电话会议记录中识别和提取与气候变化相关的双词组(即两个词的组合)。该算法结合了预定义的双词组和通过机器学习自动发现的双词组,创建了一个全面且相关的气候变化双词组集合。以下是该算法的详细步骤:

  1. 定义搜索集 ( C C C):气候变化双词组的搜索集是通过结合两个来源构建的:
    1. 50个通用气候变化双词组集( C 0 \mathbb{C}^{\mathbb{0}} C0),例如“气候变化”、“全球变暖”和“碳排放”等。
    2. 通过机器学习生成的双词组集,这些双词组是从公司电话会议记录中提取出来的,表示与气候变化相关的语言模式。
  2. 构建粗略的气候变化训练库 ( C R \mathbb{C}^{\mathbb{R}} CR):一个粗略的训练库( C R \mathbb{C}^{\mathbb{R}} CR)是通过来自气候变化政府间专门委员会(IPCC)的研究报告构建的。对该数据集执行以下处理步骤:
    1. 词形还原和词干化:将单词转换为其基本形式。
    2. 去除数字、标点符号和停用词:清理数据,集中在有意义的词汇上。
    3. 过滤双词组:删除出现次数少于10次的双词组,确保只保留频繁且相关的词组。
  3. 构建非气候变化训练库 (N):与CR相反,非气候变化库(N)来自多种来源:
    1. 英文小说,如来自Project Gutenberg的文本。
    2. 新闻文章,包括BBC和路透社的技术、商业和政治报道。
    3. 国际货币基金组织(IMF)研究报告。
    4. 会计学和计量经济学教科书。
  4. 计算粗略气候变化暴露分数 (RoughCCExposure):
    1. 对每个会议记录计算粗略的气候变化暴露分数,方法是计算气候相关的双词组在该记录中的出现频率,并与来自N的双词组进行比较( C R ∖ N \mathbb{C}^{\mathbb{R}}\setminus\mathbb{N} CRN表示的是那些在 C R \mathbb{C}^{\mathbb{R}} CR中出现但不在 N \mathbb{N} N中的双词组合,即这些双词组合被认为是与气候变化相关的,但可能仍然包含一些与气候变化无关的术语。)。公式如下:

R o u g h C C E x p o s u r e i t = 1 B i t ∑ b B i t ( 1 [ b ∈ C R ∖ N ] ) RoughCCExposure_{it}=\frac{1}{B_{it}}\sum_{b}^{B_{it}}\left(1[b\in\mathbb{C}^{\mathbb{R}}\setminus\mathbb{N}]\right) RoughCCExposureit=Bit1bBit(1[bCRN])
5. 创建参考集 ( R R R) 和搜索集 (S):

  1. 参考集 ( R R R):该集包含明确讨论气候变化的句子,这些句子中包含 C 0 \mathbb{C}^{\mathbb{0}} C0中指定的通用双词组(例如“气候变化”,“碳排放”)。
  2. 搜索集 (S):该集包含那些没有包含 C 0 \mathbb{C}^{\mathbb{0}} C0中任何双词组的句子,但可能仍然与气候变化相关的句子。
  3. 参考集大约包含60,000个句子,搜索集包含大约7000万个句子。
  4. 划分搜索集:
    1. 创建一个训练集,由参考集R和从搜索集S中随机抽取的100,000个句子组成。
    2. 训练三个机器学习分类器:多项式朴素贝叶斯(Multinomial Naive Bayes)、支持向量分类(SVC)、随机森林(Random Forest)。这些分类器使用每个句子的内容预测该句子是否属于参考集R。分类器通过网格搜索交叉验证来优化超参数。
  5. 识别目标集 (T):
    1. 如果任何一个分类器预测某个句子属于参考集R的概率大于0.8,那么该句子被加入目标集T。
    2. 目标集T包含大约70万个句子,这些句子虽然没有包含显式的气候变化双词组,但很可能涉及气候变化的内容。
  6. 发现气候变化双词组:
    1. 从目标集T和非目标集S-T中挖掘出所有的双词组。
    2. 发现大约3800个仅出现在目标集T中的双词组,这些双词组被加入到气候变化双词组集 C S \mathbb{C}^{\mathbb{S}} CS
    3. 对于在目标集和非目标集中都出现的双词组,计算它们在两个集中的文档频率,并保留那些在目标集中的出现频率高于非目标集的双词组。
  7. 排名和最终确定气候变化双词组库:
    1. 对那些在目标集中出现频率较高的双词组,使用改进的似然度指标进行排名,帮助确定哪些双词组最能区分目标集和非目标集。
    2. 按照排名选择前5%的双词组,并将其添加到最终的气候变化双词组集 C S \mathbb{C}^{\mathbb{S}} CS中,最终 C S \mathbb{C}^{\mathbb{S}} CS大约包含5000个双词组。
  8. 最终气候变化双词组库 ( C C C):
    1. 最终的气候变化双词组库由 C 0 \mathbb{C}^{\mathbb{0}} C0(最初的通用双词组集)和 C S \mathbb{C}^{\mathbb{S}} CS(机器学习发现的双词组集)组合而成。该库为全面且精炼的气候变化双词组集合。

算法的优势:

  • 自我发现:算法能够通过分析上下文,从公司电话会议记录中自动发现新的气候变化双词组。
  • 适应性强:它能够适应金融或企业环境中使用的特定语言,捕捉到那些可能与气候变化相关但不直接提到气候变化的讨论。
  • 减少误报:通过采用复杂的机器学习技术和严格的过滤过程,算法显著减少了无关或非气候相关内容的包含。

4个双词组

我们的方法允许我们调整双词组搜索算法,以发现三个独特的双词组集合C,分别捕捉机会以及监管和物理气候冲击。为此,我们将一组反映这三个主题的初始双词组输入搜索算法。然后,允许算法发现与感兴趣主题相关的双词组。表IA.IV列出了用于主题搜索的初始双词组。

在这里插入图片描述

我们通过手动挑选第一次通用的、非主题特定的双词组搜索后发现的前500个双词组中的适当双词组来构造这些主题的新初始双词组。然后,我们重新运行搜索算法,以找到每个主题的更广泛的双词组集合。由于基于主题的算法产生了一些通用的气候变化双词组,我们删除了出现在多个主题中的双词组,以确保我们没有重叠的主题衡量指标。在最后阶段,我们取C与每个主题双词组集合的交集,以获得机会、监管和物理气候变化双词组集合(即 C O p p \mathbb{C}^{\mathbb{Opp}} COpp, C R e g \mathbb{C}^{\mathbb{Reg}} CReg, 和 C P h y \mathbb{C}^{\mathbb{Phy}} CPhy)。

使用上述双词组集合,我们为每个记录构建气候变化暴露衡量指标。这些衡量指标被解释为捕捉某个时间点电话参与者对气候变化话题的关注度,而不是作为基本暴露的衡量指标。我们将使用广泛的气候变化双词组集合C来说明如何构建这些衡量指标。主题衡量指标以类似的方式构建;我们只需将C替换为与相应主题相关的双词组。

整体暴露衡量指标 (CCExposure)

我们基于指定的双词组在记录中出现的频率构造一个整体暴露衡量指标。这涉及到将气候双词组集合C应用到公司i在季度t的记录,并计算这些双词组的频率。为了考虑电话会议的长度,我们将计数除以记录中的双词组数量:
C C E x p o s u r e i , t = 1 B i , t ∑ b B i , t ( 1 [ b ∈ C ] ) CCExposure_{i,t}=\frac{1}{B_{i,t}}\sum_{b}^{B_{i,t}}\left(1[b\in\mathbb{C}]\right) CCExposurei,t=Bi,t1bBi,t(1[bC])

其中, b = 0 , 1 , . . . , B i , t b=0,1,...,B_{i,t} b=0,1,...,Bi,t是公司i在季度t的收益电话会议记录中的双词组,。 1 [ b ∈ C ] 1[b\in\mathbb{C}] 1[bC]是一个指示函数。我们通过平均季度衡量指标来创建每个公司的年度衡量指标。我们使用相同的方法为 C O p p \mathbb{C}^{\mathbb{Opp}} C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PD我是你的真爱粉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值