数字逻辑第二章---逻辑代数的基础

提纲

一、逻辑代数的基本概念
二、逻辑代数的基本定理和规则
三、逻辑函数表达式的形式与变换
四、逻辑函数化简

本章知识点

一、五个公理
二、八个定理
三、三个规则
四、逻辑表达式的形式变换

一、逻辑代数的基本概念

1、逻辑函数的定义及公理
2、逻辑变量及基本运算
3、逻辑函数及逻辑函数间的相等
4、逻辑函数的表示法

逻辑代数亦称为布尔代数,是英国数学家乔治布尔于1849年创立的

逻辑代数的定义:
(1)逻辑代数L是一个封闭的代数系统
(2)由一个逻辑变量集K常量0和1, 以及“或”、“与” 、“非”三种基本运算所构成
(3)记为:L={K(变量集), +(或运算),点乘号(与运算),-(非运算),0,1}

逻辑代数公理:
公理1:交换律
A + B = B + A A ⋅ B = B ⋅ A \begin{aligned} &A+B=B+A\\ &A \cdot B=B \cdot A \end{aligned} A+B=B+AAB=BA
公理2:结合律
( A + B ) + C = A + ( B + C ) ( A ⋅ B ) ⋅ C = A ⋅ ( B ⋅ C ) \begin{aligned} &(A+B)+C=A+(B+C)\\ &(A \cdot B) \cdot C=A \cdot(B \cdot C) \end{aligned} (A+B)+C=A+(B+C)(AB)C=A(BC)
公理3:分配律
A + ( B ⋅ C ) = ( A + B ) ⋅ ( A + C ) A ⋅ ( B + C ) = A ⋅ B + A ⋅ C \begin{aligned} &A+(B \cdot C)=(A+B) \cdot(A+C)\\ &A \cdot(B+C)=A \cdot B+A \cdot C \end{aligned} A+(BC)=(A+B)(A+C)A(B+C)=AB+AC
公理4:0-1律
A + 0 = A A + 1 = 1 A ⋅ 0 = 0 A ⋅ 1 = A \begin{aligned} &A+0=A \quad A+1=1\\ &A \cdot 0=0 \quad A \cdot 1=A \end{aligned} A+0=AA+1=1A0=0A1=A
公理5:互补律
对于任意的逻辑变量A,存在唯一的 A ˉ \bar{A} Aˉ,使得
A + A ˉ = 1 A ⋅ A ˉ = 0 \begin{aligned} &A+\bar{A}=1\\ &A \cdot \bar{A}=0 \end{aligned} A+Aˉ=1AAˉ=0

2、逻辑变量及基本运算
(1)逻辑变量
用字母表示其值可以变化的量
腿一逻辑变量的取值: 0, 1
逻辑值0和1无大小、正负之分
(2)逻辑代数的基本运算
基本运算:”或”,”与”,“非”

“或逻辑”:"或”逻辑:决定某一事件是否发生的多个条件中,只要有一个或一个以上条件成立,事件便可发生

或运算:
运算符号:“+”或“ ∨ \vee "
F = A + B 或者 F = A ∨ B F=A+B \text{或者} F=A \vee B F=A+B或者F=AB
读作:F等于A或B
0 + 0 = 0 1 + 0 = 1 0 + 1 = 1 1 + 1 = 1 \begin{aligned} &0+0=0 \quad 1+0=1\\ &0+1=1 \quad 1+1=1 \end{aligned} 0+0=01+0=10+1=11+1=1
实现“或”运算关系的逻辑电路称为“或”门
在这里插入图片描述

与运算:
“与”逻辑:决定某一事件发生的多个条件必须同时具备,事件才会发生
F = A ⋅ B 或者 F = A ∧ B F=A \cdot B\text{或者}F=A \wedge B F=AB或者F=AB
读作:F等于A与B
0 ⋅ 0 = 0 1 ⋅ 0 = 0 0 ⋅ 1 = 0 1 ⋅ 1 = 1 \begin{aligned} &0\cdot 0=0 \quad 1 \cdot 0=0\\ &0 \cdot 1=0 \quad 1 \cdot 1=1 \end{aligned} 00=010=001=011=1
在这里插入图片描述
在这里插入图片描述
非运算:
非逻辑:某一事件的发生取决于条件的决定,即事件与事件发生的条件之间构成矛盾
F = A ˉ 或者 F = ¬ A F=\bar{A} \text{或者}F=\neg A F=Aˉ或者F=¬A
0 ‾ = 1 1 ‾ = 0 \overline{0}=1 \quad \overline{1}=0 0=11=0
实现“非”运算功能的逻辑电路称为“非”门或“反相器”
在这里插入图片描述
二、逻辑代数的基本定理和规则
公理推导定理
定理3
A + A ⋅ B = A ⋅ 1 + A ⋅ B = A ⋅ ( 1 + B ) = A ⋅ ( B + 1 ) = A ⋅ 1 = A \begin{aligned} & A+A \cdot B \\ =& A \cdot 1+A \cdot B \\ =& A \cdot(1+B) \\ =& A \cdot(B+1) \\ =& A \cdot 1 \\ =& A \end{aligned} =====A+ABA1+ABA(1+B)A(B+1)A1A

定理4:
A + A ˉ B = ( A + A ˉ ) ( A + B ) = 1 ⋅ ( A + B ) = A + B \begin{aligned} &A+\bar{A} B\\ &=(A+\bar{A})(A+B)\\ &=1 \cdot(A+B)\\ &=A+B \end{aligned} A+AˉB=(A+Aˉ)(A+B)=1(A+B)=A+B
A ⋅ ( A ˉ + B ) = A B A \cdot(\bar{A}+B)=A B A(Aˉ+B)=AB

定理5:
A ˉ ‾ = A \overline{\bar{A}}=A Aˉ=A

定理6:
A + B ‾ = A ˉ ⋅ B ˉ A ⋅ B ‾ = A ˉ + B ˉ \overline{A+B}=\bar{A} \cdot \bar{B} \quad \overline{A \cdot B}=\bar{A}+\bar{B} A+B=AˉBˉAB=Aˉ+Bˉ
A ˉ ⋅ B ˉ + ( A + B ) = ( A ˉ ⋅ B ˉ + A ) + B = ( A + A ˉ ⋅ B ˉ ) + B = ( A + B ˉ ) + B = A + ( B ˉ + B ) = A + 1 = 1 \begin{aligned} & \bar{A} \cdot \bar{B}+(A+B) \\ =&(\bar{A} \cdot \bar{B}+A)+B \\ =& (A+\bar{A} \cdot \bar{B})+B \\ =&(A+\bar{B})+B\\ =&A+(\bar{B}+B)\\ =&A+1\\ =&1 \end{aligned} ======AˉBˉ+(A+B)(AˉBˉ+A)+B(A+AˉBˉ)+B(A+Bˉ)+BA+(Bˉ+B)A+11

A ˉ ⋅ B ˉ ⋅ ( A + B ) = A ˉ ⋅ B ˉ ⋅ A + A ˉ ⋅ B ˉ ⋅ B = A ⋅ A ˉ ⋅ B ˉ + A ˉ ⋅ B ⋅ B ˉ = 0 ⋅ B ˉ + A ˉ ⋅ 0 = 0 \begin{aligned} & \bar{A} \cdot \bar{B} \cdot(A+B) \\ =& \bar{A} \cdot \bar{B} \cdot A+\bar{A} \cdot \bar{B} \cdot B \\ =& A \cdot \bar{A} \cdot \bar{B}+\bar{A} \cdot B \cdot \bar{B} \\ =& 0 \cdot \bar{B}+\bar{A} \cdot 0 \\ =& 0 \end{aligned} ====AˉBˉ(A+B)AˉBˉA+AˉBˉBAAˉBˉ+AˉBBˉ0Bˉ+Aˉ00

定理7:
A B + A B ˉ = A ( A + B ) ( A + B ˉ ) = A A B+A \bar{B}=A \quad(A+B)(A+\bar{B})=A AB+ABˉ=A(A+B)(A+Bˉ)=A

定理8:
A ⋅ B + A ˉ ⋅ C + B ⋅ C = A ⋅ B + A ˉ ⋅ C ( A + B ) ⋅ ( A ˉ + C ) ⋅ ( B + C ) = ( A + B ) ⋅ ( A ˉ + C ) \begin{aligned} &A \cdot B+\bar{A} \cdot C+B \cdot C=A \cdot B+\bar{A} \cdot C\\ &(A+B) \cdot(\bar{A}+C) \cdot(B+C)=(A+B) \cdot(\bar{A}+C) \end{aligned} AB+AˉC+BC=AB+AˉC(A+B)(Aˉ+C)(B+C)=(A+B)(Aˉ+C)

A ⋅ B + A ˉ ⋅ C + B ⋅ C = A ⋅ B + A ˉ ⋅ C + B ⋅ C ⋅ ( A + A ˉ ) = A ⋅ B + A ˉ ⋅ C + B ⋅ C ⋅ A + B ⋅ C ⋅ A ˉ = A ⋅ B + A ⋅ B ⋅ C + A ˉ ⋅ C + A ˉ ⋅ B ⋅ C = A ⋅ B ( 1 + C ) + A ˉ ⋅ C ( 1 + B ) = A ⋅ B ( C + 1 ) + A ˉ ⋅ C ( B + 1 ) = A ⋅ B + A ˉ ⋅ C \begin{aligned} & A \cdot B+\bar{A} \cdot C+B \cdot C \\ =& A \cdot B+\bar{A} \cdot C+B \cdot C \cdot(A+\bar{A}) \\ =& A \cdot B+\bar{A} \cdot C+B \cdot C \cdot A+B \cdot C \cdot \bar{A} \\ =& A \cdot B+A \cdot B \cdot C+\bar{A} \cdot C+\bar{A} \cdot B \cdot C \\ =& A \cdot B(1+C)+\bar{A} \cdot C(1+B) \\ =& A \cdot B(C+1)+\bar{A} \cdot C(B+1) \\ =& A \cdot B+\bar{A} \cdot C \end{aligned} ======AB+AˉC+BCAB+AˉC+BC(A+Aˉ)AB+AˉC+BCA+BCAˉAB+ABC+AˉC+AˉBCAB(1+C)+AˉC(1+B)AB(C+1)+AˉC(B+1)AB+AˉC

三、逻辑函数化简:
利用公理和定理化简
方法:
1、代数化简法
2、卡诺图化简法
3、列表化简法

代数化简法:
在这里插入图片描述
在这里插入图片描述
运用公理、定理和规则
规则:代入规则、反演规则(反函数)、对偶规则
常用的化简方法:
并项法
吸收法(定理3)
消去法(定理4)
配项法( A ⋅ 1 = A 或 A + A ˉ = 1 A \cdot 1=A \text{或} A+\bar{A}=1 A1=AA+Aˉ=1

举个例子:
A B ‾ + B C ‾ + B ‾ C + A ‾ B = A B ‾ + B C ‾ + ( A + A ‾ ) B ‾ C + A ‾ B ( C + C ‾ ) = A B ‾ + B C ‾ + A B C + A ‾ B ‾ C + A ‾ B C + A ‾ B C ‾ = A B ‾ + B C ‾ + A ‾ C \begin{aligned} & \mathrm{A}\overline{\mathrm{B}}+\mathrm{B}\overline{\mathrm{C}}+\overline{\mathrm{B}} \mathrm{C}+\overline{\mathrm{A}} \mathrm{B} \\ =& \mathrm{A} \overline{\mathrm{B}}+\mathrm{B} \overline{\mathrm{C}}+(\mathrm{A}+\overline{\mathrm{A}}) \overline{\mathrm{B}} \mathrm{C}+\overline{\mathrm{A}} \mathrm{B}(\mathrm{C}+\overline{\mathrm{C}}) \\ =& \mathrm{A} \overline{\mathrm{B}}+\mathrm{B} \overline{\mathrm{C}}+\mathrm{AB} \mathrm{C}+\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C}+\overline{\mathrm{A}} \mathrm{B} \mathrm{C}+\overline{\mathrm{A}} \mathrm{B} \overline{\mathrm{C}} \\ =& \mathrm{A} \overline{\mathrm{B}}+\mathrm{B} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{C} \end{aligned} ===AB+BC+BC+ABAB+BC+(A+A)BC+AB(C+C)AB+BC+ABC+ABC+ABC+ABCAB+BC+AC

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值