数字逻辑-第二章逻辑代数基础

逻辑变量及基本逻辑运算

  1. 或运算
    F=A + B F=A V B
    实现或运算关系的逻辑电路称为或门。
  2. 与运算
    F=A · B F = A ⋀ B F=A\bigwedge B F=AB
    实现与运算关系的逻辑电路称为与门。
  3. 非运算
    F = A ˉ F=\bar{A} F=Aˉ
    实现非运算功能的逻辑电路称为非门,有时又称为反相器。

逻辑函数及逻辑函数间的相

  1. 逻辑函数的定义:①逻辑变量和逻辑函数的取值只有0和1两种可能;②函数和变量之间的关系是由或、与、非3种基本运算决定。
    ps:逻辑电路和逻辑函数之间存在严格的对应关系,任何一个逻辑电路的全部属性和功能都可由相应的逻辑函数完全描述。
  2. 逻辑函数的相等:①变量集相同②逻辑变量的任何一组取值,逻辑函数的值都相同。
  3. 证明方法:真值表法,逻辑代数法,卡诺图法

逻辑函数的表示方法

  1. 逻辑表达式: ()—>——> · —> ⨁ \bigoplus —>+ 优先级:高---->低
  2. 真值表:一个n个变量的逻辑函数,其真值表有 2 n 2^n 2n行,具有唯一性。
  3. 卡诺图:化简有用

逻辑代数的基本定义和规则

基本定理

  • 定理1(0-1)律

  • 定理2 (重叠律)
    A+A=A -----A·A=A

  • 定理3(吸收律)
    A + A ⋅ B = A A+A\cdot B=A A+AB=A _______ A ⋅ ( A + B ) = A A\cdot(A+B)=A A(A+B)=A

  • 定理4(消除律)
    A + A ˉ ⋅ B = A + B A+\bar{A}\cdot B=A+B A+AˉB=A+B _______ A ⋅ ( A + B ) = A ⋅ B A\cdot (A+B)=A\cdot B A(A+B)=AB

  • 定理5(对合律)
    A ˉ ˉ = A \bar{\bar{A}}=A Aˉˉ=A

  • 定理6(互补律)
    A + B ‾ = A ˉ ⋅ B ˉ \overline{A+B}=\bar{A} \cdot \bar{B} A+B=AˉBˉ---- A ⋅ B ‾ = A ˉ + B ˉ \overline{A\cdot B}=\bar{A} + \bar{B} AB=Aˉ+Bˉ

  • 定理7(并向律)
    A ⋅ B + A B ˉ = A A\cdot B +A\bar{B}=A AB+ABˉ=A------- ( A + B ) ⋅ ( A + B ˉ ) = A (A+B)\cdot(A+\bar{B})=A (A+B)A+Bˉ=A

  • 定理8(包含律)
    A ⋅ B + A ˉ ⋅ C + B ⋅ C = A ⋅ B + A ˉ ⋅ C A\cdot B +\bar{A}\cdot C +B\cdot C= A\cdot B +\bar{A} \cdot C AB+AˉC+BC=AB+AˉC

重要规则

  • 代入规则
  • 反演规则
    如果将逻辑函数F表达式种所有的“ ⋅ \cdot ” 变成“ + + +”,“ + + +”变成“ ⋅ \cdot ” ,“0”变成“1”,“1”变成“0”,原变量变成反变量,反变量变成原变量,并保持函数种的运算顺序不变,则所得到的函数位原函数F的反函数,并且记为 F ˉ \bar{F} Fˉ
  • 对偶规则
    如果将逻辑函数F表达式种所有的“ ⋅ \cdot ” 变成“ + + +”,“ + + +”变成“ ⋅ \cdot ” ,“0”变成“1”,“1”变成“0”,并保持函数种的运算顺序不变,则所得到的函数位原函数F的对偶式,并且记作 F ‘ F^` F
  • ps:若两个逻辑函数表达式相等,则器对偶式相等

逻辑表达式的形式与变换

  • 超链接:最大项与最小项

  • 相邻项概念:只有一个变量互补,其余变量相同,含有n个变量的最大项只有n个相邻最大项,最小项也是。

  • 关系:相同变量构成的最小项 m i m_i mi和最大项 M i M_i Mi之间存在互补关系。

  • 标准与-或表达式叫最小项表达式

  • 标准或-与表达式叫最大项表达式

  • eg F ( A , B , C ) = A ˉ B ˉ C + A ˉ B C ˉ + A B ˉ C ˉ + A B C = m 1 + m 2 + m 4 + m 7 = ∑ m ( 1 , 2 , 4 , 7 ) F(A,B,C)=\bar{A} \bar{B} C +\bar{A} B \bar{C} +A\bar{B}\bar{C} +ABC=m_1+m_2+m_4+m_7=\sum m(1,2,4,7) F(A,B,C)=AˉBˉC+AˉBCˉ+ABˉCˉ+ABC=m1+m2+m4+m7=m(1,2,4,7)

  • F ( A , B , C ) = ( A + B + C ) ( A ˉ + B + C ˉ ) ( A ˉ + B ˉ + C ˉ ) = M 0 M 5 M 7 = ∏ M ( 0 , 5 , 7 ) F(A,B,C)=(A+B+C)(\bar{A} +B +\bar{C})(\bar{A} +\bar{B} +\bar{C})=M_0 M_5 M_7=\prod{M(0,5,7)} F(A,B,C)=(A+B+C)(Aˉ+B+Cˉ)(Aˉ+Bˉ+Cˉ)=M0M5M7=M(0,5,7)

  • 代数转换法
    1.求逻辑函数标准与-或:
    ①将函数表达式变换成一般与-或表达式
    ②反复利用 X = X ⋅ ( Y + Y ˉ ) X=X\cdot (Y+\bar{Y}) X=XY+Yˉ,将表达式中所有非最小项的与项扩展成最小项。
    2.求逻辑函数标准或-与:
    方法一:
    ①将函数表达式变换成一般或-与表达式
    ②对偶成为响应与-或表达式
    ③反复利用 X = X ⋅ ( Y + Y ˉ ) X=X\cdot (Y+\bar{Y}) X=XY+Yˉ,将表达式中所有非最小项的与项扩展成最小项。
    ④对偶成为标准或-与表达式
    方法二:
    ①将函数表达式变换成一般或-与表达式
    ②反复利用定理 X = ( X + Y ˉ ) ( X + Y ) X=(X+\bar{Y})(X+Y) X=(X+Yˉ)(X+Y)把表达式中所有非最大项的或项扩展成最大项。

  • 真值表转换法
    1.真值表中,逻辑函数F值为1 的所有行的变量相与,之后行与行进行或。注意变量取值为1时不要加非,变量取值为0时加非。
    2.真值表中,逻辑函数F值为0 的所有行的变量相或,之后行与行进行与。注意变量取值为0时不要加非,变量取值为1时加非。
    ps:最大项与最小项存在集合互补关系。

逻辑函数化简

超链接逻辑函数化简

注意,代数化简法的化简结果不唯一

卡诺图中,求标准或-与
表达式时,表示成一半与-或,画出卡诺图,合并零方格,求出反函数的与或表达式(一次),然后对反函数进行取反(两次),获得逻辑函数的最简或-与表达式。(就是两次取反法)

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值