超越股神的贝佐斯:“我可是在做一件大事”

超越股神的贝佐斯:“我可是在做一件大事”(转)

取代巴菲特,成为世界第三富有的人,亚马逊创始人杰夫·贝佐斯(Jeff Bezos,又译作杰夫·贝索斯)最近可谓春风得意。

7月底,亚马逊市值首次突破3500亿美元,超阿里巴巴与京东市值总和,而贝佐斯身价达到了650.5亿美元,比股神巴菲特高出3200万美元,超越股神成为全球第三大富豪。

这家2015年才和亏损说拜拜的公司,却受到了华尔街大佬们的一致认可,投行对亚马逊目标股价的普遍预期是809美元,摩根大通对亚马逊股票的目标股价为915美元,甚至还有分析师把亚马逊的股价目标定在了1000美元。

可以说,亚马逊的成功与贝佐斯的一生都紧密相连,没有贝佐斯也就没有当今的亚马逊帝国。

少年天才

伟大的商业天才总有不平凡的少年时光,贝佐斯也不例外。

1964年1月12日,贝佐斯生于阿尔布奎克,他是私生子。4岁时,母亲带着他嫁给了米盖尔·贝佐斯——一个60年代初期的古巴移民。

贝佐斯跟随母亲进入了这个家庭,并用了继父的姓。贝佐斯是幸运的,虽然他不是米盖尔的亲生儿子,但他们的感情却胜过亲生父子。

贝佐斯的外祖父是前原子能委员会的一位管理人员。外祖父培养了他对科学的热爱,14岁时,他就立志要当一名宇航员或物理学家。16岁时,他就能安装风车,使用弧焊机。

进入普林斯顿大学,他的兴趣转向了计算机,此时正逢计算机产业翻天覆地的变革时期。他说:“我已经陷入计算机不能自拔,正期待着某些革命性的突破。”

在普林斯顿毕业后,贝佐斯很快就进入纽约一家新成立的高科技公司。两年后,跳槽到一家纽约银行家信托公司,管理价值2500亿美元资产的电脑系统,25岁时便成了这家银行信托公司有史以来最年轻的副总裁。

1990—1995年,贝佐斯与他人一起组建了世界上最先进、最成功的套头基金交易管理公司,1992年成为该公司最年轻的资深副总裁。

亚马逊帝国

1994年,贝佐斯偶然进入一个网站,看到了一个数字:2300%,互联网使用人数每年以这个速度在成长。当时西雅图的微软已经逐渐长大了,贝佐斯看到这个数字后,眼里放光,希望自己像微软一样,在IT行业取得成功,做网络浪尖上的弄潮儿。

几周后,他就放弃了丰厚的待遇,踏上了创业之路。贝佐斯通知搬家公司说,一旦在科罗拉多州、俄勒冈州或华盛顿州这三处选定地方后即刻通知他们。匆匆西行路上,他让妻子负责开车,自己则迫不及待地用一台笔记本电脑匆匆起草一份商业计划。

1995年,贝佐斯从纽约搬到西雅图。贝佐斯用爸妈的全部积蓄——30万美元,在西雅图郊区租来的车库中,创建了全美第一家网络零售公司——Amazon.com。用全世界最大的一条河流来命名自己的公司,贝佐斯希望它能成为图书公司中名副其实的“亚马逊”。

创业初期亚马逊一直处在烧钱的阶段,外界对亚马逊经常冷嘲热讽。贝佐斯也经常抱怨自己的公司被低估。

他为自己辩解:“谁说我非得盈利呢?我可是在做一件大事。”

互联网泡沫后,和其他纳斯达克股票一样,亚马逊的股票价格一路下跌。当时雷曼兄弟投资银行里有一位分析师,在2000年发了不少报告披露亚马逊现金流和信用度。他预测亚马逊的末日即将来临:“我们确信,公司在未来的四个季度中,现金流会枯竭,除非它能变戏法式地变出一笔资金。”

这一预测引起一片哗然,媒体纷纷报道此事,投资人开始抛售亚马逊股票,致使其股价下跌20%。贝佐斯在办公室的白板上写了“我不在乎股票价格”的字样。

直到2015 年第二季度,亚马逊的营收增长了20%,利润达到9200万美元。超乎华尔街预期的结果,亚马逊的股价在开盘后暴涨 18%,市值一度达到2670亿美元。至此,亚马逊才超过沃尔玛,成为市值最高的零售商。

成立20年后,从线上书商到万有商店,击败实体书商、eBay和沃尔玛,贝佐斯几乎创造了“电商”这个词。柯立芝说美国的所有大事就是做生意——The business of America is business——贝佐斯深谙此道。

下一件大事

其实亚马逊的零售业务是赚钱的,赔钱是因为亚马逊一直在全面投资扩张,贝佐斯并不着急赚钱,他看得很远。

最著名案例莫过于云计算业务。2006年,亚马逊推出计算租赁系统,也就是亚马逊网络服务(AWS)的前身。曾经一度并不被市场看好,后来却成为了主流,反观IBM、惠普和戴尔等硬件厂商在该领域节节败退。亚马逊先发制人,领先竞争对手7年多时间。

为了保证服务质量,亚马逊还建立了自己的私用网络,而不是使用网络运营商的网络。现在的亚马逊云计算,拥有超过100多万的企业和个人用户,支撑这些用户以及亚马逊自己的业务的,是分布于全球12个地区32个数据网络上的超过200万台服务器,还有存储量惊人的数据存储中心。

如今以亚马逊独占鳌头,拿下了全球28%的云计算市场份额。2015年该业务收入超过70亿美元,最大的竞争对手也不过是其10%左右。

贝佐斯还在谋划着多项改变世界的计划。最近,亚马逊宣布,已经获得英国民航局和其他组织的许可,得以测试无人机送货业务。贝佐斯想象的无人机将由全球定位系统(GPS)导航,直飞到顾客家门口。这一服务能够让顾客在30分钟内收到包裹。

贝佐斯还和马斯克一样,梦想进入外太空,他创立了蓝色起源,计划将在2017年对可重复使用亚轨道航天器New Shepard进行载人测试飞行。

贝佐斯的一生都在谋划大事:超过沃尔玛、云计算服务AWS,以及未来的无人机、载人飞船??现在,他还是一如既往地会声称他的公司被低估。每次他要盈利的时候,或者别人以为他要盈利的时候,他就会把一个新业务推出来,或者增加更大规模的投入。他的下一件大事又是什么呢?


【6层】一字型框架办公楼(含建筑结构图、计算书) 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值